This site uses cookies to assist with navigation and your ability to provide feedback. Cookie Policy

Here is a list of publications related to LIFEx software for metabolic tumor volume measurement (MTV) and texture analysis.


  • 2019 (29):
    • LIFEx-Texture: A multidimensional nomogram combining overall stage, dose volume histogram parameters and radiomics to predict progression-free survival in patients with locoregionally advanced nasopharyngeal carcinoma ; 
      Kaixuan Yanga, Jiangfang Tiana, Bin Zhang, Mei Lia, Wenji Xie, Yating Zou, Qiaoyue Tan, Lihui Liu, Jinbing Zhu, Arthur Shou, Guangjun Li ; Oral Oncology ; Volume 98, November 2019, Pages 85-91 ; (doi)
    • LIFEx-Texture: Shape and Texture Analysis of Radiomic Data for Computer-Assisted Diagnosis and Prognostication: An Overview ; Francesco Bianconi, Mario Luca Fravolini, Isabella Palumbo, Barbara Palumbo ; Proceedings of the International Conference on Design Tools and Methods in Industrial Engineering, ADM 2019, September 9-10, 2019, Modena, Italy pp 3-14 (springer)
    • LIFEx-Texture: MRI derived radiomics: Methodology and clinical applications in the field of pelvic oncology ; Ulrike Schick, François Lucia, Gurvan Dissaux, Dimitris Visvikis, Bogdan Badic, Ingrid Masson, Olivier Pradier, Vincent Bourbonne and Mathieu Hatt ; the British Institute of Radiology ; 2019, 12 september (doi)
    • LIFEx-Texture: Radiomics with artificial intelligence: a practical guide for beginners ; Burak Koçak, Emine Şebnem Durmaz, Ece Ateş, Özgür Kılıçkesmez ;  Diagn Interv Radiol ; 4 september 2019 (doi)
    • LIFEx-texture: Prediction of outcome in anal squamous cell carcinoma using radiomic feature analysis of pre-treatment FDG PET-CT ; PJ Brown, J Zhong, R Frood, S Currie, A Gilbert, AL Appelt, D Sebag-Montefiore, A Scarsbrook ;  04 September 2019 ; EJNMMI pp 1-10 (doi)
    • LIFEx-Texture: Conventional MRI radiomics in patients with suspected early- or pseudo-progression ; Alexandre Bani-SadrOmer Faruk Eker, Lise-Prune Berner, Roxana Ameli, Marc Hermier, Marc BarritaultDavid Meyronet, Jacques GuyotatEmmanuel JouanneauJerome Honnorat, François Ducray, Yves Berthezene ; Neuro-Oncology Advances ; 01 September 2019 (doi)
    • LIFEx-Texture: CT assessment of tumor heterogeneity and the potential for the prediction of human papillomavirus status in oropharyngeal squamous cell carcinoma ; Mungai F, Verrone GB, Pietragalla M, Berti V, Addeo G, Desideri I, Bonasera L, Miele V. Radiol Med. 2019 Mar 25. (pubmed)
    • LIFEx-Texture: Glioblastoma Multiforme and Anaplastic Astrocytoma: Differentiation using MRI Texture Analysis ; J Xu, X Ma, Z Tian, C Chen, Y Fan, X Ou, J Wang - Frontiers in Oncology, 2019 ; (doi)
    • LIFEx-Texture: Contrast-Enhanced CT Texture Analysis: a New Set of Predictive Factors for Small Cell Lung Cancer ; Chaoyue Chen, Xuejin Ou, Hui Li, Yanjie Zhao, Fengnian Zhao, Shengliang Zhou, Xuelei Ma ; Molecular Imaging and Biology ; August 2019 ; pp 1-7 (springer)
    • LIFEx-MTV: Time to prepare for risk adaptation in lymphoma by standardising measurement of metabolic tumour burden. Sally F Barrington, Michel Meignan ; Apr 2019 ; Journal of Nuclear Medicine ; (jnm)
    • LIFEx-Texture: Prognostic Value of Functional Parameters of 18F-FDG-PET Images in Patients with Primary Renal/Adrenal Lymphoma ; M Wang, H Xu, L Xiao, W Song, S Zhu, X Ma ; Contrast Media & Molecular Imaging, Volume 2019, Article ID 2641627 (doi, cm&mi)
    • LIFEx-Texture: Machine learning for differentiating metastatic and completely responded sclerotic bone lesion in prostate cancer: a retrospective radiomics study. Emine Acar, Asim Leblebici, Berat Ender Ellidokuz, Yasemin Basbinar and Gamze Çapa Kaya. British Institute of Radiology. Published Online: July 10, 2019 (doi)
    • LIFEx-Texture: AI-based applications in hybrid imaging: how to build smart and truly multi-parametric decision models for radiomics. Isabella Castiglioni, Francesca GallivanonePaolo Soda, Michele AvanzoJoseph StancanelloMarco AielloMatteo InterlenghiMarco Salvatore. European Journal of Nuclear Medicine and Molecular Imaging. First Online: 11 July 2019 ; (springer)
    • LIFEx-Texture: CT texture analysis for the prediction of KRAS mutation status in colorectal cancer via a machine learning approach ; N Taguchi, S Oda, Y Yokota, S Yamamura, M Imuta ;European Journal of Radiology ; Volume 118, September 2019, Pages 38-43 (sciencedirect)
    • LIFEx-Texture: Radiomics in nuclear medicine: robustness, reproducibility, standardization, and howto avoid data analysis traps and replication crisis ; Alex Zwanenburg ; European Journal of Nuclear Medicine and Molecular Imaging ; 25 June 2019 (doi)
    • LIFEx-Texture: Predicting survival and local control after radiochemotherapy in locally advanced head and neck cancer by means of computed tomography based radiomics ; Luca CozziCiro FranzeseAntonella FogliataDavide FranceschiniPierina NavarriaStefano TomatisMarta Scorsetti ; Strahlentherapie und Onkologie, pp 1-14 (doi)
    • LIFEx-Texture: Discrimination of pancreatic serous cystadenomas from mucinous cystadenomas with CT textural features: based on machine learning ; Jing Yang, Xinli Guo, Xuejin Ou, Weiwei Zhang, Xuelei Ma ; Front. Oncol., 12 June 2019 (doilink)
    • LIFEx-Texture: The Future of Medical Imaging ; Luigi Landini ; Current Pharmaceutical Design, 2018, Vol. 24, No. 46 (eurekaselect)
    • LIFEx-MTV: Time to prepare for risk adaptation in lymphoma by standardising measurement of metabolic tumour burden ; Sally F Barrington and Michel Meignan ; J Nucl Med April 6, 2019 jnumed.119.227249 (abstract)
    • LIFEx-Texture: Inter-observer and segmentation method variability of textural analysis in pre-therapeutic FDG PET/CT in head and neck cancer ; Catherine Guezennec, David Bourhis, Fanny Orlhac, Philippe Robin, Jean-Baptiste Corre, Olivier Delcroix, Yves Gobel, Ulrike Schick, Pierre-Yves Salaun, Ronan Abgral ; PLOSone March 28, 2019 ; (doiplosone)
    • LIFEx-Texture: PET/CT radiomics in breast cancer: promising tool for prediction of pathological response to neoadjuvant chemotherapy ; Lidija Antunovic, Rita De Sanctis, Luca Cozzi, Margarita Kirienko, Andrea Sagona, Rosalba Torrisi, Corrado Tinterri, Armando Santoro, Arturo Chiti, Renata Zelic, Martina Sollini ; 26 March 2019 ; European Journal of Nuclear Medicine and Molecular Imaging ; (doi)
    • LIFEx-Texture: Radiomics and Machine Learning for Radiotherapy in Head and Neck Cancers ; Paul Giraud, Philippe Giraud, Anne Gasnier, Radouane El Ayachy, Sarah Kreps, Jean-Philippe Foy, Catherine Durdux, Florence Huguet, Anita Burgun and Jean-Emmanuel Bibault ; Front. Oncol., 27 March 2019 ; (doi)
    • LIFEx-Texture: Texture Analysis on [18F]FDG PET/CT in Non-Small-Cell Lung Cancer: Correlations Between PET Features, CT Features, and Histological Types ; Francesco Bianconi, Isabella Palumbo, Mario Luca Fravolini, Rita Chiari, Matteo Minestrini, Luca Brunese, Barbara Palumbo ; March 2019 ; Molecular Imaging & Biology ; (doi)
    • LIFEx-Texture: Tumor heterogeneity in oral and oropharyngeal squamous cell carcinoma assessed by texture analysis of CT and conventional MRI: a potential marker of overall survival ; Jiliang Ren, Ying Yuan, Yiqian Shi, Xiaofeng Tao ;Acta Radiologica ; First Published February 28, 2019 (doi)
    • LIFEx-Texture: Ability of 18F-FDG PET/CT Radiomic Features to Distinguish Breast Carcinoma from Breast Lymphoma - Xuejin Ou, Jian Wang, Ruofan Zhou, Sha Zhu, Fuwen Pang, Yi Zhou, Rong Tian and Xuelei Ma ; Contrast Media & Molecular Imaging ; Volume 2019, Article ID 4507694, Published 25 February 2019, 9 pages (doi)
    • LIFEx-Texture: Postmortem Changes in Skeletal Muscle Can Be Expressed by Hounsfield Unit Measurements in Postmortem Computed Tomography—A Murine Model Study ;  Yamada, Tsuyoshi; Takeuchi, Tamaki; Ito, Morihiro ;  Journal of Medical Imaging and Health Informatics, Volume 9, Number 2 February 2019, pp. 261-266(6) (doi)
    • LIFEx-Texture: Validation of a method to compensate multicenter effects affecting CT radiomics. Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I. Radiology 2019 (doi) (hal)
    • LIFEx-Texture: Computed tomography based radiomic signature as predictive of survival and local control after stereotactic body radiation therapy in pancreatic carcinoma. Cozzi L, Comito T, Fogliata A, Franzese C, Franceschini D, Bonifacio C, Tozzi A, Di Brina L, Clerici E, Tomatis S, Reggiori G, Lobefalo F, Stravato A, Mancosu P, Zerbi A, Sollini M, Kirienko M, Chiti A, Scorsetti M. PlosOne Jan 2019 (plosone) (doi)
    • LIFEx-Texture: Radiomics in Oncological PET/CT: a Methodological Overview. Seunggyun Ha, Hongyoon Choi, Jin Chul Paeng, Gi Jeong Cheon. Nuclear Medicine and Molecular Imaging Jan 2019 (springer)
  • 2018 (26):
    • LIFEx-Texture: Implications of reconstruction protocol for histo-biological characterisation of breast cancers using FDG-PET radiomics. Aide N, Salomon T, Blanc-Fournier C, Grellard JM, Levy C, Lasnon C. EJNMMI Research, Dec 2018 (springer)
    • LIFEx-Texture: Prognostic value of textural indices extracted from pretherapeutic 18‐F FDG‐PET/CT in head and neck squamous cell carcinoma. Guezennec C, Robin P, Orlhac F, Bourhis D, Delcroix O, Gobel Y, Rousset J, Schick U, Salaün PY, Abgral R. Head & Neck, Dec 2018 (doi)
    • LIFEx-Texture: The value of MR textural analysis in prostate cancer. Patel N, Henry A, Scarsbrook A. Clinical Radiology ; Available online 17 December 2018
      (sciencedirect)(doi)
    • LIFEx-Texture: Effects of CT FOV displacement and acquisition parameters variation on texture analysis features. Biondi M, Vanzi E, De Otto G, Carbone SF, Nardone V, Banci Buonamici F. Physics in Medicine and Biology, 2018 Nov, 1361-6560 (link)
    • LIFEx-Texture: Machine-learning integration of CT histogram analysis to evaluate the composition of atherosclerotic plaques: Validation with IB-IVUS. Masudaae T, Nakaura T, Funamad Y, Okimoto T, Satob T, Higakie T, Noda N, Imadaa N, Babae Y, Awai K ; Journal of Cardiovascular Computed Tomography ; Oct 2018 (link)
    • LIFEx-Texture: Meignan M and Cottereau AS. FDG-PET in PMBCL: which heterogeneity? Blood 2018 132:117-118 (link)
    • LIFEx-MTV: Chantepie S, Hovhannisyan N, Guillouet S, Pelage JP, Ibazizene M, Bodet-Milin C, Carlier T, Gac AC, Réboursière E, Vilque JP, Kraeber-Bodéré F, Manrique A, Damaj G, Leporrier M, Barré L. 18F-Fludarabine PET for Lymphoma Imaging: First-in-Humans Study on DLBCL and CLL Patients. J Nucl Med. 2018 Sep;59(9):1380-1385 (link)
    • LIFEx-Texture: Nakagawa M, Nakaura T, Namimoto T, Kitajima M, Uetani H, Tateishi M, Oda S, Utsunomiya D, Makino K, Nakamura H, Mukasa A, Hirai T, Yamashita Y. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma. European Journal of Radiology. 2018 Sep (link)
    • LIFEx-Texture: Vendrami CL, Velichko YS, Miller FH, Chatterjee A, Villavicencio CP, Yaghmai V, McCarthy RJ. Differentiation of Papillary Renal Cell Carcinoma Subtypes on MRI: Qualitative and Texture Analysis. AJR Am J Roentgenol. 2018 Sep 21:1-12 (link)
    • LIFEx-Texture: Lohmann P, Lerche C, Bauer EK, Steger J, Stoffels G, Blau T, Dunkl V, Kocher M, Viswanathan S, Filss CP, Stegmayr C, Ruge MI, Neumaier B, Shah NJ, Fink GR, Langen KJ & Galldiks N. Predicting IDH genotype in gliomas using FET PET radiomics. Scientific Reports 8, Article number: 13328 (2018) (link)
    • LIFEx-Texture: Liu C, Ding J, Spuhler K, Gao Y, Serrano Sosa M, Moriary M, Hussain S, He X, Liang C, Huang C. Preoperative prediction of sentinel lymph node metastasis in breast cancer by radiomic signatures from dynamic contrast‐enhanced MRI. J Magn Reson Imaging, 2018 Sep (link
    • LIFEx-Texture: R Sun, EJ Limkin, M Vakalopoulou, L Dercle, S Champiat, S Rong Han, L Verlingue, D Brandao, A Lancia, S Ammari, A Hollebecque, JY Scoazec, A Marabelle, C Massard, JC Soria, C Robert, N Paragios, E Deutsch, C Ferté. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study; The Lancet Oncology ; Published:August 14, 2018 (link)
    • LIFEx-Texture: P Lohmann, M Kocher, G Ceccon, EK Bauer, G Stoffels, S Viswanathan, MI Ruge, B Neumaier, NJ Shah, GR Fink, KJ Langen, N Galldiks. Combined FET PET/MRI radiomics differentiates radiation injury from recurrent brain metastasis. Neuroimage Clinical. 2018, 20:537-542 (link).
    • LIFEx-Texture: C Nioche, F Orlhac, S Boughdad, S Reuzé, J Goya-Outi, C Robert, C Pellot-Barakat, M Soussan, F Frouin, and I Buvat. LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity. Cancer Research 2018; 78(16):4786-4789 (link).
    • LIFEx-Texture: S Boughdad, C Nioche, F Orlhac, L Jehl, L Champion, I Buvat. Influence of age on radiomic features in 18F-FDG PET in normal breast tissue and in breast cancer tumors. Oncotarget 2018; 9:30855-30868 (link).
    • LIFEx-Texture: A Parvez, N Tau, D Hussey, M Maganti, U Metser. 18F-FDG PET/CT metabolic tumor parameters and radiomics features in aggressive non-Hodgkin’s lymphoma as predictors of treatment outcome and survival. Ann Nucl Med (2018). https://doi.org/10.1007/s12149-018-1260-1 (link)
    • LIFEx-Texture: T Tsujikawa, H Tsuyoshi, M Kanno, S Yamada, M Kobayashi, N Narita, H Kimura, S Fujieda, Y Yoshida and H Okazawa. Selected PET radiomic features remain the same. Oncotarget. 2018; 9:20734-20746. https://doi.org/10.18632/oncotarget.25070. (link)
    • LIFEx-MTV: P Blanc-Durand, A Van Der Gucht, N Schaefer, E Itti, J O. Prior. Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net convolutional neural network study. Plos One April 13, 2018 (link)
    • LIFEx-Texture: M Kirienko M, L Cozzi, A Rossi, E Voulaz, L Antunovic, A Fogliata, A Chiti, M Sollini. Ability of FDG PET and CT radiomics features to differentiate between primary and metastatic lung lesions. Eur J Nucl Med Mol Imaging. 2018 Apr 6. doi: 10.1007/s00259-018-3987-2. (link)
    • LIFEx-Texture: V Nardone, P Tini, S Croci, SF Carbone, L Sebaste, T Carfagno, G Battaglia, P Pastina, G Rubino, MA Mazzei, L Pirtoli. 3D bone texture analysis as a potential predictor of radiationinduced insufficiency fractures. Quant Imaging Med Surg 2018;8(1):14-24 (link)
    • LIFEx-Texture: C Caramella, A Allorant, F Orlhac, F Bidault, B Asselain, S Ammari, P Jaranowski, A Moussier, C Balleyguier, N Lassau, S Pitre-Champagnat. Can we trust the calculation of texture indices of CT images? A phantom study. Med Phys. 2018 Feb 14. doi: 10.1002/mp.12809 (link)
    • LIFEx-Texture: V Nardone, P Tini, C Nioche, MA Mazzei, T Carfagno, G Battaglia, P Pastina, R Grassi, L Sebaste, L Pirtoli. Texture analysis as a predictor of radiation-induced xerostomia in head and neck patients undergoing IMRT. Radiol Med. 2018 Jan 24. doi: 10.1007/s11547-017-0850-7 (link)
    • LIFEx-Texture: F Orlhac, S Boughdad, C Philippe, H Stalla-Bourdillon, C Nioche, L Champion, M Soussan, F Frouin, V Frouin, I Buvat. A post-reconstruction harmonization method for multicenter radiomic studies in PET. J Nucl Med. 2018  doi: 10.2967/jnumed.117.199935. [Epub ahead of print] (link)
    • LIFEx-Texture: M Kirienko, L Cozzi, L Antunovic, L Lozza, A Fogliata, E Voulaz, A Rossi, A Chiti, M Sollini ; Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery. Eur J Nucl Med Mol Imaging 45:207-217, 2018 (link)
    • LIFEx-Texture: N Aide, M Talbot, C Fruchart, G Damaj, C Lasnon ; Diagnostic and prognostic value of baseline FDG PET/CT skeletal textural features in diffuse large B cell lymphoma. Eur J Nucl Med Mol Imaging. 2018;45(5):699-711 (link)
    • LIFEx-Texture: A Schernberg, S Reuze, F Orlhac, I Buvat, L Dercle, R Sun, E Limkin, A Escande, C Haie-Meder, E Deutsch, C Chargari, C Robert ; A score combining baseline neutrophilia and primary tumor SUVpeak measured from FDG PET is associated with outcome in locally advanced cervical cancer ; Eur J Nucl Med Mol Imaging. 2018;45(2):187-195. doi: 10.1007/s00259-017-3824-z (link)
  •  2017 (5):
    • LIFEx-Texture: L Cozzi, N Dinapoli†, A Fogliata, WC Hsu, G Reggiori, F Lobefalo, M Kirienko, M Sollini, D Franceschini, T Comito, C Franzese, Ma Scorsetti and PM Wang ; Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy. BMC Cancer 2017 17:829 (link)
    • LIFEx-Texture: F Orlhac, C Nioche, M Soussan, I Buvat ; Understanding changes in tumor textural indices in PET: a comparison between visual assessment and index values in simulated and patient data. J Nucl Med 2017; 58:387–392: (link)
    • LIFEx-Texture: S Reuzé, F Orlhac, C Chargari, C Nioche, E Limkin, F Riet, A Escande, C Haie-Meder, L Dercle, S Gouy, I Buvat, E Deutsch, C Robert ; Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners. Oncotarget. 2017; 8(26):43169-43179 (link)
    • LIFEx-Texture: M Sollini, L Cozzi, G Pepe, L Antunovic, A Lania, L Di Tommaso, P Magnoni, PA Erba,M Kirienko ; [18F]FDG-PET/CT texture analysis in thyroid incidentalomas: preliminary results. European Journal of Hybrid Imaging1:3 (link)
    • LIFEx-Texture: V Nardone, P Tini, C Nioche, M Biondi, L Sebaste, MA Mazzei, F Banci Buonamici, L Pirtoli ; Texture analysis of parotid gland as a predictive factor of radiation induced xerostomia: A subset analysis. Radiother Oncol. 2017 Feb;122(2):321. doi: 10.1016/j.radonc.2016.09.004 (link)
  • 2016 (2):
    • LIFEx-Texture: F Orlhac, B Thézé, M Soussan, R Boisgard, I Buvat ; Multiscale texture analysis: from 18F-FDG PET images to pathological slides. J Nucl Med 57: 1823-1828, 2016 (link)
    • LIFEx-Texture: O Diop, EAL Bathily, B Ndong, G Mbaye, RS Senghor, W Sow-Diop, M Soumboundou, LAD Diouf, AR Djiboune, PM Sy, M Diarra, O Ndoye, M Mbodj, S Seck-Gassama ; Etude de la robustesse des statistiques de premier ordre dans la discrimination des ganglions malins et benins dans le cancer du col de l'utérus. Journal des Sciences, I.S.S.N 0851 – 4631 (link)
  •  2015 (2):
    • LIFEx-Texture: F Orlhac, M Soussan, K Chouahnia, E Martinod, I Buvat ; 18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non small cell lung cancer. Plos One 10(12):e0145063, 2015 (link)
    • LIFEx-Texture: I Buvat, F Orlhac, M Soussan ; Tumor texture analysis in PET: where do we stand? J Nucl Med 56: 1642-1644, 2015 (link)
  •  2014 (2):
    • LIFEx-Texture: M Soussan, F Orlhac, M Boubaya, L Zelek, M Ziol, V Eder, I Buvat ; Relationship between tumor heterogeneity measured on FDG-PET/CT and pathological prognostic factors in invasive breast cancer. Plos One 9: e94017, 2014 (link)
    • LIFEx-Texture: F Orlhac, M Soussan, JA Maisonobe, CA Garcia, B Vanderlinden, I Buvat ; Tumor texture analysis in 18F-FDG-PET: relationships between texture parameters, histogram indices, SUVs, metabolic volumes and total lesion glycolysis. J Nucl Med 55: 414-422, 2014 (link)
 

Login Form