(14)

  1. LIFEx-MTV: Albano, D., Temponi, A., Bertagna, F. et al. The prognostic role of staging [18F]PSMA-1007 PET/CT volumetric and dissemination features in prostate cancer. Ann Nucl Med (2025). https://doi.org/10.1007/s12149-025-02026-7
  2. LIFEx-main: Liu, Y., Wang, J., Du, B. et al. Predicting malignant risk of ground-glass nodules using convolutional neural networks based on dual-time-point 18F-FDG PET/CT. Cancer Imaging 25, 17 (2025). https://doi.org/10.1186/s40644-025-00834-8
  3. LIFEx-texture: Pellegrino S, Fonti R, Morra R, Di Donna E, Servetto A, Bianco R, Del Vecchio S. Prognostic Value of Tumor Dissemination (Dmax) Derived from Basal 18F-FDG Positron Emission Tomography/Computed Tomography in Patients with Advanced Non-Small-Cell Lung Cancer. Biomedicines. 2025; 13(2):477. https://www.mdpi.com/2227-9059/13/2/477
  4. LIFEx-texture: Dwivedi P, Sagar S, AK Jha, S Choudhury, Venkatesh R. Robustness of 18F-FDG PET Radiomic Features in Lung Cancer: Impact of Advanced Reconstruction Algorithm.  J. Nucl. Med. Technol. 2025/02/05. http://doi.org/10.2967/jnmt.124.268252
  5. LIFEx-texture: Filippi, L., Bianconi, F., Minestrini, M. et al. Multi-centre data harmonisation applied to heart-to-mediastinum quantification in parkinsonism (ITA-MIBG): a cross-calibration phantom study with tube and bottle. Clin Transl Imaging (2025). https://doi.org/10.1007/s40336-025-00681-4
  6. LIFEx-texture: Jiang, C., Jiang, Z., Zhang, Z. et al. An explainable transformer model integrating PET and tabular data for histologic grading and prognosis of follicular lymphoma: a multi-institutional digital biopsy study. Eur J Nucl Med Mol Imaging (2025). https://doi.org/10.1007/s00259-025-07090-9
  7. LIFEx-texture: Beaumont H, Iannessi A, Thinnes A, Jacques S, Quintás-Cardama A. Radiomics-Based Prediction of Treatment Response to TRuC-T Cell Therapy in Patients with Mesothelioma: A Pilot Study. Cancers. 2025; 17(3):463. https://doi.org/10.3390/cancers17030463
  8. LIFEx-texture: Jiang, C., Qian, C., Jiang, Q. et al. Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT. BMC Med 23, 49 (2025). https://doi.org/10.1186/s12916-025-03893-7
  9. LIFEx-MTV: Wen, Z., Gao, X., Wu, Q. et al. Baseline [18F]FDG PET/CT radiomics for predicting interim efficacy in follicular lymphoma treated with first-line R-CHOP. BMC Cancer 25, 128 (2025). https://doi.org/10.1186/s12885-025-13507-3
  10. LIFEx-MTV-texture: Kleiburg, F., de Geus-Oei, LF., Spijkerman, R. et al. Baseline PSMA PET/CT parameters predict overall survival and treatment response in metastatic castration-resistant prostate cancer patients. Eur Radiol (2025). https://doi.org/10.1007/s00330-025-11360-3
  11. LIFEx-texture: Qi, L., Li, X., Ni, J. et al. Construction of feature selection and efficacy prediction model for transformation therapy of locally advanced pancreatic cancer based on CT, 18F-FDG PET/CT, DNA mutation, and CA199. Cancer Cell Int 25, 19 (2025). https://doi.org/10.1186/s12935-025-03639-8
  12. LIFEx-texture: Ahrari, S., Zaragori, T., Zinsz, A. et al. Clinical impact of an explainable machine learning with amino acid PET imaging: application to the diagnosis of aggressive glioma. Eur J Nucl Med Mol Imaging (2025). https://doi.org/10.1007/s00259-024-07053-6
  13. LIFEx-texture: Captier, N., Lerousseau, M., Orlhac, F. et al. Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer. Nat Commun 16, 614 (2025). https://doi.org/10.1038/s41467-025-55847-5
  14. LIFEx-texture: Zhou Y, Zhou XY, Xu YC, Ma XL, Tian R. Radiomics based on 18 F-FDG PET for predicting treatment response and prognosis in newly diagnosed diffuse large B-cell lymphoma patients: do lesion selection and segmentation methods matter? Quant Imaging Med Surg 2025;15(1):103-120. https://doi.org/10.21037/qims-24-585
  15. LIFEx-texture: Bei-Hui Xue, Shuang-Li Chen, Jun-Ping Lan, Li-Li Wang, Jia-Geng Xie, Xiang-wu Zheng, Liang-Xing Wang, Kun Tang. Explainable PET-Based Habitat and Peritumoral Machine Learning Model for Predicting Progression-free Survival in Clinical Stage IA Pure-Solid Non-small Cell Lung Cancer: A Two-center Study, Academic Radiology, 2025, ISSN 1076-6332. https://doi.org/10.1016/j.acra.2024.12.038

Review (1):

  1. LIFEx-texture: Keshavarz, Pedram et al. Prediction of treatment response and outcome of transarterial chemoembolization in patients with hepatocellular carcinoma using artificial intelligence: A systematic review of efficacy. European Journal of Radiology, Volume 0, Issue 0, 111948. https://doi.org/10.1016/j.ejrad.2025.111948

Others (3):

  1. LIFEx-texture: Yunus Soleymani, Farahnaz Aghahosseini, Peyman Sheikhzadeh. Correlation of radiomics features extracted from nuclear medicine images with lesion metabolism in patients with colon cancer. February 2025Tehran University Medical Journal 82(5). link
  2. LIFEx-texture: Malhaire C thesis. Optimization of the Prediction of Complete Response to Neoadjuvant Chemotherapy in Breast Cancer by Breast MRI : Contributions of Semantic Descriptors, Radiomics, and Segmentation Methods. HAL Id: tel-04931114. https://theses.hal.science/tel-04931114v1
  3. LIFEx-texture: S. Gülbahar Ates, B. B. Demirel, E. Kekilli, E. Öztürk, G. Uçmak. Primary Tumor Heterogeneity on Pre-treatment [68Ga]Ga-PSMA PET/CT for the Prediction of Biochemical Recurrence in Prostate Cancer. Revista española de medicina nuclear e imagen molecular, ISSN 2253-654X, Vol. 43, Nº. 6 (Noviembre-Diciembre), 2024, págs. 4-4. https://dialnet.unirioja.es/ejemplar/686513