(6)
- LIFEx-MTV-texture: Kleiburg, F., de Geus-Oei, LF., Spijkerman, R. et al. Baseline PSMA PET/CT parameters predict overall survival and treatment response in metastatic castration-resistant prostate cancer patients. Eur Radiol (2025). https://doi.org/10.1007/s00330-025-11360-3
- LIFEx-texture: Qi, L., Li, X., Ni, J. et al. Construction of feature selection and efficacy prediction model for transformation therapy of locally advanced pancreatic cancer based on CT, 18F-FDG PET/CT, DNA mutation, and CA199. Cancer Cell Int 25, 19 (2025). https://doi.org/10.1186/s12935-025-03639-8
- LIFEx-texture: Ahrari, S., Zaragori, T., Zinsz, A. et al. Clinical impact of an explainable machine learning with amino acid PET imaging: application to the diagnosis of aggressive glioma. Eur J Nucl Med Mol Imaging (2025). https://doi.org/10.1007/s00259-024-07053-6
- LIFEx-texture: Captier, N., Lerousseau, M., Orlhac, F. et al. Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer. Nat Commun 16, 614 (2025). https://doi.org/10.1038/s41467-025-55847-5
- LIFEx-texture: Zhou Y, Zhou XY, Xu YC, Ma XL, Tian R. Radiomics based on 18 F-FDG PET for predicting treatment response and prognosis in newly diagnosed diffuse large B-cell lymphoma patients: do lesion selection and segmentation methods matter? Quant Imaging Med Surg 2025;15(1):103-120. https://doi.org/10.21037/qims-24-585
- LIFEx-texture: Bei-Hui Xue, Shuang-Li Chen, Jun-Ping Lan, Li-Li Wang, Jia-Geng Xie, Xiang-wu Zheng, Liang-Xing Wang, Kun Tang. Explainable PET-Based Habitat and Peritumoral Machine Learning Model for Predicting Progression-free Survival in Clinical Stage IA Pure-Solid Non-small Cell Lung Cancer: A Two-center Study, Academic Radiology, 2025, ISSN 1076-6332. https://doi.org/10.1016/j.acra.2024.12.038