(33)
- LIFEx-texture: Liao Z, Luo D, Tang X, Huang F, Zhang X. MRI-based radiomics for predicting pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review and meta-analysis. Front Oncol. 2025 Mar 10;15:1550838. https://doi.org/10.3389/fonc.2025.1550838 PMID: 40129922; PMCID: PMC11930822.
- LIFEx-main: Shrestha et al., (2025). RT-utils: A Minimal Python Library for RT-struct Manipulation. Journal of Open Source Software, 10(107), 7361, https://doi.org/10.21105/joss.
07361 - LIFEx-texture: Isemoto, K., Waseda, Y., Fujiwara, M., Kimura, K., Hirahara, D., Saho, T., Takaya, E., Arita, Y., Kwee, T. C., Fukuda, S., Tanaka, H., Yoshida, S., & Fujii, Y. (2025). Predictive Potential of Contrast-Enhanced MRI-Based Delta-Radiomics for Chemoradiation Responsiveness in Muscle-Invasive Bladder Cancer. Diagnostics, 15(7), 801. https://doi.org/10.3390/diagnostics15070801
- LIFEx-texture: Esat Kaba, Hande Melike Bülbül, Mehmet Kıvrak, Nur Hürsoy. Multisequence combined magnetic resonance imaging radiomics model to noninvasively predict nuclear grade of clear cell renal cell carcinoma: interpretable model development. Rev Assoc Med Bras. 2025;71(1):e20241012. https://doi.org/10.1590/1806-9282.20241012
- LIFEx-texture: J. Wang, W. Tang, J. Zhu, J. Cui, Y. Chen, M. Gu, H. Xu, M. Zhan, Q. Chen, B. Xu. Predicting the pathological subdiagnosis of benign prostatic hyperplasia with MRI radiomics: A noninvasive approach. VIEW. 2025, 20240092. https://doi.org/10.1002/VIW.20240092
- LIFEx-texture: Magnin Cheryl Y., Lauer David, Ammeter Michael, Gote-Schniering Janine. From images to clinical insights: an educational review on radiomics in lung diseases. 21:1, 230225. https://doi.org/10.1183/20734735.0225-2023
- LIFEx-texture: Sriramganesh Gokavarapu, K Venkata Rao, Gorla Srinivas, Dasari Siva Krishna, Enhancing Lung Cancer Detection: Optimizing Deep Learning with Convolutional Block Attention Module, Journal of Artificial Intelligence and Technology (2025), DOI: https://doi.org/10.37965/jait.
2025.0668 - LIFEx-texture: Liu, H., Meng, X., Wang, G. et al. Differentiating second primary lung cancer from pulmonary metastasis in patients of single solitary pulmonary lesion with extrapulmonary tumor using multiparametric analysis of FDG PET/CT. Ann Nucl Med(2025). https://doi.org/10.1007/s12149-025-02034-7
-
LIFEx-texture: Alireza Safarian, Seyed Ali Mirshahvalad, Hadi Nasrollahi, Theresa Jung, Christian Pirich, Hossein Arabi, Mohsen Beheshti. Impact of [18F]FDG PET/CT Radiomics and Artificial Intelligence in Clinical Decision Making in Lung Cancer: Its Current Role, Seminars in Nuclear Medicine, 2025, ISSN 0001-2998, https://doi.org/10.1053/j.semnuclmed.2025.02.006
- LIFEx-texture: Liu, H., Meng, X., Wang, G. et al. Differentiating second primary lung cancer from pulmonary metastasis in patients of single solitary pulmonary lesion with extrapulmonary tumor using multiparametric analysis of FDG PET/CT. Ann Nucl Med(2025). https://doi.org/10.1007/s12149-025-02034-7
- LIFEx-texture: Tan Qianqian, Teng Yue, Sun Yiwen, Xu Pei, Xu Yiduo, Chen Qiaoliang, He Jian, Lai Ruihe. Prognostic value of 18F-FDG PET/CT metabolic parameters TMTV in patients with stage Ⅳ endometrial cancer[J]. Int J Radiat Med Nucl Med. https://doi.org/10.3760/cma.j.cn121381-202403022-00506
- LIFEx-texture: Lazaros K, Adam S, Krokidis MG, Exarchos T, Vlamos P, Vrahatis AG. Non-Invasive Biomarkers in the Era of Big Data and Machine Learning. Sensors. 2025; 25(5):1396. https://doi.org/10.3390/
s25051396 - LIFEx-texture: Yang, Mao et al. Multimodal integration of liquid biopsy and radiology for the noninvasive diagnosis of gallbladder cancer and benign disorders. Cancer Cell, Volume 43, Issue 3, 398 - 412.e4. https://www.cell.com/cancer-cell/fulltext/S1535-6108(25)00063-7
- LIFEx-texture: Lazaros K, Adam S, Krokidis MG, Exarchos T, Vlamos P, Vrahatis AG. Non-Invasive Biomarkers in the Era of Big Data and Machine Learning. Sensors. 2025; 25(5):1396. https://doi.org/10.3390/s25051396
- LIFEx-texture: Peng, M., Wang, M., An, W. et al. Predictive classification of lung cancer pathological based on PET/CT radiomics. Jpn J Radiol (2025). https://doi.org/10.1007/s11604-025-01742-4
- LIFEx-texture: Gennaro, N.; Soliman, M.; Borhani, A.A.; Kelahan, L.; Savas, H.; Avery, R.; Subedi, K.; Trabzonlu, T.A.; Krumpelman, C.; Yaghmai, V.; et al. Delta Radiomics and Tumor Size: A New Predictive Radiomics Model for Chemotherapy Response in Liver Metastases from Breast and Colorectal Cancer. Tomography 2025, 11, 20. https://doi.org/10.3390/tomography11030020
- LIFEx-Main: Ronga MG, Gesualdi F, Bonfrate A, et al. Comparison of secondary radiation dose between pencil beam scanning and scattered delivery for proton and VHEE radiotherapy. Med Phys. 2025;1-10. https://doi.org/10.1002/mp.17700
- Zhang, Yichi and Xue, Le and Zhang, Wenbo and Li, Lanlan and Liu, Yuchen and Jiang, Chen and Cheng, Yuan and Qi, Yuan. SegAnyPET: Universal Promptable Segmentation from Positron Emission Tomography Images. https://arxiv.org/pdf/2502.14351
- LIFEx-MTV: Albano, D., Temponi, A., Bertagna, F. et al. The prognostic role of staging [18F]PSMA-1007 PET/CT volumetric and dissemination features in prostate cancer. Ann Nucl Med (2025). https://doi.org/10.1007/s12149-025-02026-7
- LIFEx-main: Liu, Y., Wang, J., Du, B. et al. Predicting malignant risk of ground-glass nodules using convolutional neural networks based on dual-time-point 18F-FDG PET/CT. Cancer Imaging 25, 17 (2025). https://doi.org/10.1186/s40644-025-00834-8
-
LIFEx-texture: Pellegrino S, Fonti R, Morra R, Di Donna E, Servetto A, Bianco R, Del Vecchio S. Prognostic Value of Tumor Dissemination (Dmax) Derived from Basal 18F-FDG Positron Emission Tomography/Computed Tomography in Patients with Advanced Non-Small-Cell Lung Cancer. Biomedicines. 2025; 13(2):477. https://www.mdpi.com/2227-9059/13/2/477
- LIFEx-texture: Dwivedi P, Sagar S, AK Jha, S Choudhury, Venkatesh R. Robustness of 18F-FDG PET Radiomic Features in Lung Cancer: Impact of Advanced Reconstruction Algorithm. J. Nucl. Med. Technol. 2025/02/05. http://doi.org/10.2967/jnmt.124.268252
- LIFEx-texture: Filippi, L., Bianconi, F., Minestrini, M. et al. Multi-centre data harmonisation applied to heart-to-mediastinum quantification in parkinsonism (ITA-MIBG): a cross-calibration phantom study with tube and bottle. Clin Transl Imaging (2025). https://doi.org/10.1007/s40336-025-00681-4
- LIFEx-texture: Jiang, C., Jiang, Z., Zhang, Z. et al. An explainable transformer model integrating PET and tabular data for histologic grading and prognosis of follicular lymphoma: a multi-institutional digital biopsy study. Eur J Nucl Med Mol Imaging (2025). https://doi.org/10.1007/s00259-025-07090-9
- LIFEx-texture: Beaumont H, Iannessi A, Thinnes A, Jacques S, Quintás-Cardama A. Radiomics-Based Prediction of Treatment Response to TRuC-T Cell Therapy in Patients with Mesothelioma: A Pilot Study. Cancers. 2025; 17(3):463. https://doi.org/10.3390/cancers17030463
- LIFEx-texture: Jiang, C., Qian, C., Jiang, Q. et al. Virtual biopsy for non-invasive identification of follicular lymphoma histologic transformation using radiomics-based imaging biomarker from PET/CT. BMC Med 23, 49 (2025). https://doi.org/10.1186/s12916-025-03893-7
- LIFEx-MTV: Wen, Z., Gao, X., Wu, Q. et al. Baseline [18F]FDG PET/CT radiomics for predicting interim efficacy in follicular lymphoma treated with first-line R-CHOP. BMC Cancer 25, 128 (2025). https://doi.org/10.1186/s12885-025-13507-3
- LIFEx-MTV-texture: Kleiburg, F., de Geus-Oei, LF., Spijkerman, R. et al. Baseline PSMA PET/CT parameters predict overall survival and treatment response in metastatic castration-resistant prostate cancer patients. Eur Radiol (2025). https://doi.org/10.1007/s00330-025-11360-3
- LIFEx-texture: Qi, L., Li, X., Ni, J. et al. Construction of feature selection and efficacy prediction model for transformation therapy of locally advanced pancreatic cancer based on CT, 18F-FDG PET/CT, DNA mutation, and CA199. Cancer Cell Int 25, 19 (2025). https://doi.org/10.1186/s12935-025-03639-8
- LIFEx-texture: Ahrari, S., Zaragori, T., Zinsz, A. et al. Clinical impact of an explainable machine learning with amino acid PET imaging: application to the diagnosis of aggressive glioma. Eur J Nucl Med Mol Imaging (2025). https://doi.org/10.1007/s00259-024-07053-6
- LIFEx-texture: Captier, N., Lerousseau, M., Orlhac, F. et al. Integration of clinical, pathological, radiological, and transcriptomic data improves prediction for first-line immunotherapy outcome in metastatic non-small cell lung cancer. Nat Commun 16, 614 (2025). https://doi.org/10.1038/s41467-025-55847-5
- LIFEx-texture: Zhou Y, Zhou XY, Xu YC, Ma XL, Tian R. Radiomics based on 18 F-FDG PET for predicting treatment response and prognosis in newly diagnosed diffuse large B-cell lymphoma patients: do lesion selection and segmentation methods matter? Quant Imaging Med Surg 2025;15(1):103-120. https://doi.org/10.21037/qims-24-585
- LIFEx-texture: Bei-Hui Xue, Shuang-Li Chen, Jun-Ping Lan, Li-Li Wang, Jia-Geng Xie, Xiang-wu Zheng, Liang-Xing Wang, Kun Tang. Explainable PET-Based Habitat and Peritumoral Machine Learning Model for Predicting Progression-free Survival in Clinical Stage IA Pure-Solid Non-small Cell Lung Cancer: A Two-center Study, Academic Radiology, 2025, ISSN 1076-6332. https://doi.org/10.1016/j.acra.2024.12.038
Review (1):
- LIFEx-texture: Keshavarz, Pedram et al. Prediction of treatment response and outcome of transarterial chemoembolization in patients with hepatocellular carcinoma using artificial intelligence: A systematic review of efficacy. European Journal of Radiology, Volume 0, Issue 0, 111948. https://doi.org/10.1016/j.ejrad.2025.111948
Others (4):
-
LIFEx-texture:TERZI ATHINA Marina. Radiogenomic Analysis of Lung Cancer. MSc program “Biomedical Engineering and Technology”. https://polynoe.lib.uniwa.gr/xmlui/bitstream/handle/11400/8616/Terzi_bmet2305.pdf
- LIFEx-texture: Yunus Soleymani, Farahnaz Aghahosseini, Peyman Sheikhzadeh. Correlation of radiomics features extracted from nuclear medicine images with lesion metabolism in patients with colon cancer. February 2025Tehran University Medical Journal 82(5). link
- LIFEx-texture: Malhaire C thesis. Optimization of the Prediction of Complete Response to Neoadjuvant Chemotherapy in Breast Cancer by Breast MRI : Contributions of Semantic Descriptors, Radiomics, and Segmentation Methods. HAL Id: tel-04931114. https://theses.hal.science/tel-04931114v1
- LIFEx-texture: S. Gülbahar Ates, B. B. Demirel, E. Kekilli, E. Öztürk, G. Uçmak. Primary Tumor Heterogeneity on Pre-treatment [68Ga]Ga-PSMA PET/CT for the Prediction of Biochemical Recurrence in Prostate Cancer. Revista española de medicina nuclear e imagen molecular, ISSN 2253-654X, Vol. 43, Nº. 6 (Noviembre-Diciembre), 2024, págs. 4-4. https://dialnet.unirioja.es/ejemplar/686513