- LIFEx-texture: Fornacon-Wood I, Mistry H, Ackermann CJ, Blackhall F, McPartlin A, Faivre-Finn C, Price GJ, O'Connor JPB. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur Radiol. 2020 Nov;30(11):6241-6250. https://doi.org/10.1007/s00330-020-06957-9. Epub 2020 Jun 1. PMID: 32483644; PMCID: PMC7553896.
- LIFEx-texture: Gruzdev, I S; Zamyatina, K A; Tikhonova, V S; Kondratyev, E V; Glotov, A V; Karmazanovsky, G G; Revishvili, A Sh. Reproducibility of CT texture features of pancreatic neuroendocrine neoplasms. Eur J Radiol ; 133: 109371, 2020 Dec (doi)
- LIFEx-texture: Liu Zefan, Zhu Guannan, Jiang Xian, Zhao Yunuo, Zeng Hao, Jing Jing, Ma Xuelei. Survival Prediction in Gallbladder Cancer Using CT Based Machine Learning. Frontiers in Oncology. November 2020, Vol 10, Article 604288 (doi)
- LIFEx-texture: Philipp Lohmann, Anna-Katharina Meißner, Martin Kocher, Elena K Bauer, Jan-Michael Werner, Gereon R Fink, Nadim J Shah, Karl-Josef Langen, Norbert Galldiks. Feature-based PET/MRI radiomics in patients with brain tumors. Neuro-Oncology Advances, Volume 2, Issue Supplement_4, December 2020, Pages iv15–iv21 (doi)
- LIFEx-MTV: 18F-FDG-PET dissemination features in diffuse large B cell lymphoma are predictive of outcome ; Anne-Ségolène Cottereau, Christophe Nioche, Anne-Sophie Dirand, Jérôme Clerc, Franck Morschhauser, Olivier Casasnovas, Michel Meignan, Irène Buvat ; Journal of Nuclear Medicine, published on June 14, 2019 (doi)
- LIFEx-texture: Integrating Liquid Biopsy and Radiomics to Monitor Clonal Heterogeneity of EGFR-Positive Non-Small Cell Lung Cancer ; Cucchiara Federico, Del Re Marzia, Valleggi Simona, Romei Chiara, Petrini Iacopo, Lucchesi Maurizio, Crucitta Stefania, Rofi Eleonora, De Liperi Annalisa, Chella Antonio, Russo Antonio, Danesi Romano ; Front. Oncol. 10:593831(doi)
- LIFEx-texture: Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers ; Santiago Cepeda, Ignacio Arrese, Sergio Garcia-Garcia, Maria Velasco-Casares, Trinidad Escudero-Caro, Tomas Zamora, Rosario Sarabia ; World Neurosurgery ; Available online 28 November 2020 (doi)
- LIFEx-texture: Development and validation of a CT-texture analysis nomogram for preoperatively differentiating thymic epithelial tumor histologic subtypes. Ren, C., Li, M., Zhang, Y. et al. Cancer Imaging 20, 86 (2020) (doi)
- LIFEx-texture: CT texture analysis of mediastinal lymphadenopathy: Combining with US-based elastographic parameter and discrimination between sarcoidosis and lymph node metastasis from small cell lung cancer ; Eriko KodaTsuneo Yamashiro, Rintaro Onoe, Hiroshi Handa, Shinya Azagami, Shoichiro Matsushita, Hayato Tomita, Takeo Inoue, Masamichi Mineshita ; PlosOne Dec 2, 2020 (doi)
- LIFEx-texture: Correlating Radiomic Features of Heterogeneity on CT with Circulating Tumor DNA in Metastatic Melanoma. Gill, A.B.; Rundo, L.; Wan, J.C.M.; Lau, D.; Zawaideh, J.P.; Woitek, R.; Zaccagna, F.; Beer, L.; Gale, D.; Sala, E.; Couturier, D.-L.; Corrie, P.G.; Rosenfeld, N.; Gallagher, F.A. Cancers 2020, 12, 3493 (doi)
- LIFEx-texture:Texture indices of 4′-[methyl-11C]-thiothymidine uptake predict p16 status in patients with newly diagnosed oropharyngeal squamous cell carcinoma: comparison with 18F-FDG uptake. Ihara-Nishishita, A., Norikane, T., Mitamura, K. et al. European J Hybrid Imaging 4, 20 (2020) (doi)
- LIFEx-texture: Prognostic value of FDG-PET radiomics with machine learning in pancreatic cancer. Toyama, Y., Hotta, M., Motoi, F. et al. Sci Rep 10, 17024 (2020) (doi)
- LIFEx-Texture: Radiomics to predict outcomes and abscopal response of patients with cancer treated with immunotherapy combined with radiotherapy using a validated signature of CD8 cells ; Sun R, Sundahl N, Hecht M, et al ; Journal for ImmunoTherapy of cancer 2020;8:e001429 (pdf)
- LIFEx-Texture: Saint Martin, MJ., Orlhac, F., Akl, P. et al. A radiomics pipeline dedicated to Breast MRI: validation on a multi-scanner phantom study. Magn Reson Mater Phy (2020) (doi)
- LIFEx-Texture: Intensity harmonization techniques influence radiomics features and radiomics‑based predictions in sarcoma patients ; Crombé, A., Kind, M., Fadli, D. et al. ; Sci Rep 10, 15496 (2020) (doi)
- LIFEx-Viewer: High-quality brain perfusion SPECT images may be achieved with a high-speed recording using 360° CZT camera. Bordonne, M., Chawki, M.B., Marie, P. et al. EJNMMI Phys 7, 65 (2020) (doi)
- LIFEx-Texture: Optimizing the Peritumoral Region Size in Radiomics Analysis for Sentinel Lymph Node Status Prediction in Breast Cancer ; Lan Lei, Junqi Sun, Prateek Prasanna, Chunling Liu, Chuan Huang ; Academic Radiology ; online 5 November 2020 (doi)
- LIFEx-Texture: Fully automatic segmentation of diffuse large B cell lymphoma lesions on 3D FDG-PET/CT for total metabolic tumour volume prediction using a convolutional neural network. Blanc-Durand, P., Jégou, S., Kanoun, S. et al. Eur J Nucl Med Mol Imaging (2020) (doi)
- LIFEx-Texture: Contrast-Enhanced CT-based Textural Parameters as Potential Prognostic Factors of Survival for Colorectal Cancer Patients Receiving Targeted Therapy. Zhao, Y., Yang, J., Luo, M. et al. Mol Imaging Biol 2020 (doi)
- LIFEx-Texture: Methodological Study to Investigate the Potential of Ultrasound-Based Elastography and Texture as Biomarkers to Monitor Liver Tumors ; Salma Moalla, Charly Girot, Stéphanie Franchi-Abella, Samy Ammari, Corinne Balleyguier, Nathalie Lassau and Stéphanie Pitre-Champagnat ; Diagnostics 2020, 10, 811 (doi)
- LIFEx-Texture: Prognostic value of FDG-PET radiomics with machine learning in pancreatic cancer. Toyama, Y., Hotta, M., Motoi, F. et al. Sci Rep 10, 17024 (2020) (doi)
- LIFEx-Texture: Machine learning-based FDG PET-CT radiomics for outcome prediction in larynx and hypopharynx squamous cell carcinoma. J.Zhong, R.Frood, P.Brown, H.Nelstrop, R.Prestwich, G.McDermott, S.Currie, S.Vaidyanathan, A.F.Scarsbrook ; Clinical Radiology, Oct 2020 (doi)
- LIFEx-Texture: Repeatability of 18F-FDG PET Radiomic Features in Cervical Cancer ; Crandall JP, Fraum TJ, Lee M, Jiang L, Grigsby PW, Wahl RL. J Nucl Med October 2, 2020 jnumed.120.247999 (doi)
- LIFEx-Texture: Pancreas adenocarcinoma CT texture analysis: comparison of 3D and 2D tumor segmentation techniques. Kulkarni, A., Carrion-Martinez, I., Dhindsa, K. et al. ; Abdom Radiol (2020) (doi)
- LIFEx-Texture: Intensity harmonization techniques influence radiomics features and radiomics-based predictions in sarcoma patients. Crombé, A., Kind, M., Fadli, D. et al. Sci Rep 10, 15496 (2020) (doi)
- LIFEx-Texture: How can we combat multicenter variability in MR radiomics? Validation of a correction procedure. Orlhac F, Lecler A, Savatovski J, Goya-Outi J, Nioche C, Charbonneau F, Ayache N, Frouin F, Duron L, Buvat I. Eur Radiol (2020) (doi)
- LIFEx-Texture: Value of volumetric and textural analysis in predicting the treatment response in patients with locally advanced rectal cancer. Karahan Şen, N.P., Aksu, A. & Kaya, G.Ç. Ann Nucl Med (2020) (doi)
- LIFEx-Viewer: Early Prediction of Tumor Response to Neoadjuvant Chemotherapy and Clinical Outcome in Breast Cancer Using a Novel FDG-PET Parameter for Cancer Stem Cell Metabolism ; Chanwoo Kim, Sang-Ah Han, Kyu Yeoun Won, Il Ki Hong and Deog Yoon Kim ; J. Pers. Med. 2020, 10, 132; doi:10.3390/jpm10030132 (doi)
- LIFEx-Viewer: Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma. Park C, Na KJ, Choi H, Ock CY, Ha S, Kim M, Park S, Keam B, Kim TM, Paeng JC, Park IK, Kang CH, Kim DW, Cheon GJ, Kang KW, Kim YT, Heo DS. Theranostics. 2020 Aug 29;10(23):10838-10848. doi: 10.7150/thno.50283. PMID: 32929383; PMCID: PMC7482798 (doi)
-
LIFEx-Texture: Value of Shape and Texture Features from 18F-FDG PET/CT to Discriminate between Benign and Malignant Solitary Pulmonary Nodules: An Experimental Evaluation ; Palumbo B, Bianconi F, Palumbo I, Fravolini ML, Minestrini M, Nuvoli S, Stazza ML, Rondini M, Spanu A ; Diagnostics 2020, 10, 696 (doi)
- LIFEx-Texture: Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma ; Park C, Na KJ, Choi H, Ock CY, Ha S, Kim M, Park S, Keam B, Kim TM, Paeng JC, Park IK, Kang CH, Kim DW, Cheon GJ, Kang KW, Kim YT, Heo DS. ; Theranostics 2020; 10(23):10838-10848 (doi)
- LIFEx-Texture: A Nomogram Based on Radiomics with Mammography Texture Analysis for the Prognostic Prediction in Patients with Triple-Negative Breast Cancer; Xian Jiang, Xiuhe Zou, Jing Sun, Aiping Zheng, Chao Su,, Contrast Media ; Molecular Imaging, vol. 2020, Article ID 5418364, 10 pages, 2020 (doi)
-
LIFEx-Texture: Association between immunotherapy biomarkers and glucose metabolism from F-18 FDG PET ; Kim BS, Kang J, Jun S, Im H, Pak K, Kim GH, Heo BJ, Kim YH ; European Review for Medical and Pharmacological Sciences ; 2020; 24: 8288-8295 (europeanreview)
- LIFEx-Viewer: Reciprocal change in Glucose metabolism of Cancer and Immune Cells mediated by different Glucose Transporters predicts Immunotherapy response ; Kwon Joong Na, Hongyoon Choi, Ho Rim Oh, Yoon Ho Kim, Sae Bom Lee, Yoo Jin Jung, Jaemoon Koh, Samina Park, Hyun Joo Lee, Yoon Kyung Jeon, Doo Hyun Chung, Jin Chul Paeng, In Kyu Park, Chang Hyun Kang, Gi Jeong Cheon, Keon Wook Kang, Dong Soo Lee, and Young Tae Kim ; Theranostics. 2020; 10(21): 9579–9590 (doi)
- LIFEx-Texture : A Nomogram Based on Radiomics with Mammography Texture Analysis for the Prognostic Prediction in Patients with Triple-Negative Breast Cancer ; Xian Jiang, Xiuhe Zou, Jing Sun, Aiping Zheng, Chao Su ; Contrast Media ; Molecular Imaging, vol. 2020, Article ID 5418364, 10 pages, 2020 (doi)
- LIFEx-Texture: Evaluating Focal 18F-FDG Uptake in Thyroid Gland with Radiomics. Aksu, A., Karahan Şen, N.P., Acar, E. et al. Nucl Med Mol Imaging 2020 (doi)
- LIFEx-Texture: Improving the quantitative classification of Erlenmeyer flask deformities. Adusumilli, G., Kaggie, J.D., D’Amore, S. et al. Skeletal Radiol 2020 (doi)
- LIFEX-Texture: Radiomics-based model for accurately distinguishing between severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and influenza A infected pneumonia. Zeng Q-Q, Zheng KI, Chen J, et al. MedComm. 2020;1–9 (doi)
- LIFEx-Texture: Radiomics in diffusion data: a test–retest, inter- and intra-reader DWI phantom study ; C. Dreher, T.A. Kuder, F. König, A. Mlynarska-Bujny, C. Tenconi, D. Paech, H.-P. Schlemmer, M.E. Ladd, S. Bickelhaupt ; Clinical Radiology July 25, 2020 (doi)
- LIFEX-Texture: Distinguishing Lymphomatous and Cancerous Lymph Nodes in 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography by Radiomics ; B Zheng, J Wu, Z Zhao, X Ou, P Cao, X Ma ; Contrast Media & Molecular Imaging, 2020, Article ID 3959236 (doi)
-
LIFEx-MTV:A Case of Metastatic Hereditary Leiomyomatosis and Renal Cell Cancer Syndrome-Associated Renal Cell Carcinoma Treated with a Sequence of Axitinib and Nivolumab Following Cytoreductive Nephrectomy ; Ichiro Yonese, Masaya Ito, Kosuke Takemura, Takao Kamai, Fumitaka Koga ; Journal of Kidney Cancer and VHL 2020; 7(2): 6-10 9 (doi)
- LIFEx-MTV: Comparison of different automatic methods for the delineation of the total metabolic tumor volume in I–II stage Hodgkin Lymphoma. Martín-Saladich, Q., Reynés-Llompart, G., Sabaté-Llobera, A. et al. Sci Rep 10, 12590 (2020) (doi)
- LIFEx-Texture: Radiomics in diffusion data: a test–retest, inter-and intra-reader DWI phantom study ; C.Dreher, T.A.Kuder, F.König, A.Mlynarska-Bujny, C.Tenconi, D.Paech, H. P. Schlemmer, M.E.Ladd, S. Bickelhaupt ; Clinical Radiology ; Available online 25 July 2020 (doi)
- LIFEx-Texture: Discrimination between pituitary adenoma and craniopharyngioma using MRI-based image features and texture features ; Yang Zhang, Chaoyue Chen, Zerong Tian & Jianguo Xu ; Jpn J Radiol (2020) (doi)
- LEFEx-Texture: MRI-based texture analysis to differentiate the most common parotid tumours; O.Sarioglu, F.C.Sarioglu, A.I. Akdogan, U.Kucuk, I.B.Arslan, I.Cukurova, Y.Pekcevik ; Clinical Radiology ; Available online 20 July 2020 (doi)
- LIFEx-Texture: Reinventing Radiation Therapy with Machine Learning and Imaging Bio-markers (Radiomics): state-of-the-art, challenges and perspectives ; Laurent Dercle, Theophraste Henry, Alexandre Carré, Nikos Paragios, Eric Deutsch, Charlotte Robert ; Methods ; Available online 19 July 2020 (doi)
- LIFEx-Texture: Prediction of survival outcome based on clinical features and pretreatment 18FDG-PET/CT for HNSCC patients ; Sayantani Ghosh, Shaurav Maulik, Sanjoy Chatterjee, Indranil Mallick, Nishant Chakravorty, JayantaMukherjee ; Computer Methods and Programs in Biomedicine ; Available online 18 July 2020, 105669 (doi)
- LIFEx-Texture: Radiomics-based prediction of survival in patients with head and neck squamous cell carcinoma based on pre- and post-treatment 18F-PET/CT ; Zheran Liu, Yuan Cao, Wei Diao, Yue Cheng, Zhiyun Jia, Xingchen Peng ; AGING 2020, Vol. 12, Advance (pdf)
- LIFEx-Texture: Value of 18F-FDG PET/CT-based radiomics model to distinguish the growth patterns of early invasive lung adenocarcinoma manifesting as ground-glass opacity nodules ; Xiaonan Shao, Rong Niu, Xiaoliang Shao, Zhenxing Jiang and Yuetao Wang ; Shao et al. EJNMMI Research (2020) 10:80 (doi)
- LIFEx-Texture: Radiomics: A New Biomedical Workflow to Create a Predictive Model. Comelli A. et al. (2020) In: Papież B., Namburete A., Yaqub M., Noble J. (eds) Medical Image Understanding and Analysis. MIUA 2020. Communications in Computer and Information Science, vol 1248. Springer, Cham (doi)
- LIFEx-Texture: Image-Guided Radiooncology: The Potential of Radiomics in Clinical Application ; JC Peeken, B Wiestler, SE Combs - Molecular Imaging in Oncology, 2020 (doi)
- LIFEx-Texture : Peeken J.C., Wiestler B., Combs S.E. (2020) Image-Guided Radiooncology: The Potential of Radiomics in Clinical Application. In: Schober O., Kiessling F., Debus J. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 216. Springer, Cham (doi)
- LIFEx-Texture: Value of 18F-FDG PET/CT radiomic features to distinguish solitary lung adenocarcinoma from tuberculosis. Yujing Hu & Xinming Zhao & Jianyuan Zhang & Jingya Han & Meng Dai ; Eur J Nucl Med Mol Imaging (2020) (doi)
- LIFEx-Texture, LIFEx-MTV: 18F-FDG Pet Parameters and Radiomics Features Analysis in Advanced Nsclc Treated with Immunotherapy as Predictors of Therapy Response and Survival. Polverari, G.; Ceci, F.; Bertaglia, V.; Reale, M.L.; Rampado, O.; Gallio, E.; Passera, R.; Liberini, V.; Scapoli, P.; Arena, V.; Racca, M.; Veltri, A.; Novello, S.; Deandreis, D. Cancers 2020, 12, 1163 (doi)
- LIFEx-Texture: MRI-Based Texture Features as Potential Prognostic Biomarkers in Anaplastic Astrocytoma Patients Undergoing Surgical Treatment ; Yang Zhang, Chaoyue Chen, Yangfan Cheng Danni Cheng Fumin Zhao and Jianguo Xu ; Contrast Media & Molecular Imaging ; Volume 2020, Article ID 2126768 (doi)
- LIFEx-Texture: Texture analysis in susceptibility-weighted imaging may be useful to differentiate acute from chronic multiple sclerosis lesions ; Giovanni Caruana, Lucas M. Pessini, Roberto Cannella, Giuseppe Salvaggio, Andréa de Barros, Annalaura Salerno, Cristina Auger & Alex Rovira ; Eur Radiol (2020) (doi)
- LIFEx-Texture: Predicting MGMT Promoter Methylation of Glioblastoma from Dynamic Susceptibility Contrast Perfusion: A Radiomic Approach. Girolamo Crisi Silvano Filice. Journal of Neuroimaging, May 2020 (doi)
- LIFEx-Texture: Current status and quality of radiomics studies in lymphoma: a systematic review. Wang, H., Zhou, Y., Li, L. et al. Eur Radiol (2020) (doi)
- LIFEx-Texture: Liver Tumor Burden in Pancreatic Neuroendocrine Tumors: CT Features and Texture Analysis in the Prediction of Tumor Grade and 18F-FDG Uptake ; Alessandro Beleù, Giulio Rizzo, Riccardo De Robertis, Alessandro Drudi, Gregorio Aluffi, Chiara Longo, Alessandro Sarno, Sara Cingarlini, Paola Capelli, Luca Landoni, Aldo Scarpa, Claudio Bassi and Mirko D’Onofrio ; Cancers 2020, 12, 1486 (doi)
- LIFEx-Texture: Machine-Learning Classifiers in Discrimination of Lesions Located in the Anterior Skull Base. Zhang Y, Shang L, Chen C, Ma X, Ou X, Wang J, Xia F and Xu J (2020) Front. Oncol. 10:752 (doi)
- LIFEx-Texture: Radiotranscriptomics signature-based predictive nomograms for radiotherapy response in patients with nonsmall cell lung cancer: Combination and association of CT features and serum miRNAs levels. Liyuan Fan Qiang Cao Xiuping Ding Dongni Gao Qiwei Yang Baosheng Li ; Cancer Medicine, 27 may 2020 (doi)
- LIFEx-Texture: Development and validation of an 18F-FDG PET radiomic model for prognosis prediction in patients with nasal-type extranodal natural killer/T cell lymphoma. Wang, H., Zhao, S., Li, L. et al. Eur Radiol (2020) (doi)
- LIFEx-Texture: Computed tomography (CT)-derived radiomic features differentiate prevascular mediastinum masses as thymic neoplasms versus lymphomas. Kirienko, M., Ninatti, G., Cozzi, L. et al. Radiol med (2020) (doi)
- LIFEx-Texture: MRI-based texture analysis for differentiating pediatric craniofacial rhabdomyosarcoma from infantile hemangioma. Sarioglu, F.C., Sarioglu, O., Guleryuz, H. et al. Eur Radiol (2020) (doi)
- LIFEx (Texture+MTV): 18F-FDG Pet Parameters and Radiomics Features Analysis in Advanced Nsclc Treated with Immunotherapy as Predictors of Therapy Response and Survival ; Giulia Polverari, Francesco Ceci, Valentina Bertaglia, Maria Lucia Reale, Osvaldo Rampado, Elena Gallio, Roberto Passera, Virginia Liberini, Paola Scapoli, Vincenzo Arena, Manuela Racca, Andrea Veltri, Silvia Novello and Désirée Deandreis. Published: 5 May 2020; Cancers 2020, 12, 1163 (doi)
- LIFEx-Texture: Methodological framework for radiomics applications in Hodgkin Lymphoma. Martina Sollini, Margarita Kirienko, Lara Cavinato, Francesca Ricci, Matteo Biroli, Francesca Ieva, Letizia Calderoni, Elena Tabacchi, Cristina Nanni, Pier Luigi Zinzani, Stefano Fanti, Anna Guidetti, Alessandra Alessi, Paolo Corradini, Ettore Seregni, Carmelo Carlo Stella, Arturo Chiti ; Nuclear Medicine & Medical Imaging ; Hematology ; May 2020 (doi)
- LIFEx-Texture: Differentiation of renal cell carcinoma subtypes through MRI-based radiomics analysis. Wang, W., Cao, K., Jin, S. et al. Eur Radiol (2020) (doi)
- LIFEx-Texture: A Non-invasive Method to Diagnose Lung Adenocarcinoma. Yan M and Wang W (2020) Front. Oncol. 10:602 (doi)
- LIFEx-Texture: Magnetic resonance imaging features of tumor and lymph node to predict clinical outcome in node-positive cervical cancer: a retrospective analysis. Park, S., Hahm, M.H., Bae, B.K. et al. Radiat Oncol 15, 86 (2020) (doi)
- LIFEx-Texture: Texture Analysis of Ultrasound Images to Differentiate Simple Fibroadenomas From Complex Fibroadenomas and Benign Phyllodes Tumors ; I Basara Akin, H Ozgul, K Simsek, C Altay, M Secil, P Balci; Journal of Ultrasound in Medicine 2020 (doi)
- LIFEx-Texture: Evaluation of CT-based radiomics signature and nomogram as prognostic markers in patients with laryngeal squamous cell carcinoma. Chen, L., Wang, H., Zeng, H. et al. Cancer Imaging 20, 28 (2020) (doi)
- LIFEx-Texture: Delta-radiomics increases multicentre reproducibility: a phantom study. Nardone, V., Reginelli, A., Guida, C. et al. Med Oncol 37, 38 (2020)(doi)
- LIFEx-Texture: Association Between the Size and 3D CT-Based Radiomic Features of Breast Cancer Hepatic Metastasis. Yuri S.Velichko, Amirhossein Mozafarykhamseh, Tugce Agirlar Trabzonlu, Zhuoli Zhang, Alfred W. Rademaker, Vahid Yaghmai (doi)
- LIFEx-Texture: Treatment-related changes in neuroendocrine tumors as assessed by textural features derived from 68Ga-DOTATOC PET/MRI with simultaneous acquisition of apparent diffusion coefficient. Weber, M., Kessler, L., Schaarschmidt, B. et al. BMC Cancer 20, 326 (2020) (doi)
- LIFEx-Texture: Baseline 18F-FDG PET radiomic features as predictors of 2-year event-free survival in diffuse large B cell lymphomas treated with immunochemotherapy. Aide, N., Fruchart, C., Nganoa, C. et al. ; Eur Radiol (2020) (doi)
- LIFEx-Texture: A low-cost texture-based pipeline for predicting myocardial tissue remodeling and fibrosis using cardiac ultrasound ; Nobuyuki Kagiyama, Sirish Shrestha, Jung Sun Cho, Muhammad Khalil, Yashbir Singh, Abhiram Challa, Grace Casaclang-Verzosa, Partho P. Sengupta ; EBioMedicine 54 (2020) 102726 (doi)
- LIFEx-Texture: Immunotherapy in Metastatic Colorectal Cancer: Could the Latest Developments Hold the Key to Improving Patient Survival? Damilakis, E.; Mavroudis, D.; Sfakianaki, M.; Souglakos, J. ; Cancers 2020, 12, 889 (mdpi)
- LIFEx-Texture: Radiomics of cholangiocarcinoma on pretreatment CT can identify patients who would best respond to radioembolisation. Mosconi, C., Cucchetti, A., Bruno, A. et al. Eur Radiol (2020) (doi)
- LIFEx-Texture: High-Dimensional Statistical Learning and Its Application to Oncological Diagnosis by Radiomics ; Bouveyron C. (2020) ; In: Nordlinger B., Villani C., Rus D. (eds) Healthcare and Artificial Intelligence. Springer, Cham (doi)
- LIFEx-Texture: Radiomics and Machine Learning in Anal Squamous Cell Carcinoma: A New Step for Personalized Medicine? ; Nicolas Giraud, Paul Sargos, Nicolas Leduc, Olivier Saut, Te Vuong and Veronique Vendrely ; Appl. Sci. 2020, 10, 1988; (doi)
- LIFEx-Texture: Magnetic resonance imaging assessment of chemotherapy-related adipocytic maturation in myxoid/round cell liposarcomas: specificity and prognostic value ; Amandine Crombe, Maxime Sitbon, berhard Stoeckle, Antoine Italiano, Xavier Buy, François Le Loarer, Michèle Kind ; the British Institute of Radiology; February 27, 2020 (birpublications)
- LIFEx-Texture: Performance of Multiparametric Functional Imaging and Texture Analysis in Predicting Synchronous Metastatic Disease in Pancreatic Ductal Adenocarcinoma Patients by Hybrid PET/MR: Initial Experience ; Gao Jing, Huang Xinyun, Meng Hongping, Zhang Miao, Zhang Xiaozhe, Lin Xiaozhu, Li Biao ; Front. Oncol., 25 February 2020 (frontiers)
- LIFEx-Texture: Integrated radiomic model for predicting the prognosis of esophageal squamous cell carcinoma patients undergoing neoadjuvant chemoradiation ; Tien-Chi Hou, Wen-Chien Huang, Hung-Chi Tai, Yu-Jen Chen ; Ther Radiol Oncol 2019;3:28 (tro)
- LIFEx-Texture: Radiomic Analysis of Craniopharyngioma and Meningioma in the Sellar/Parasellar Area with MR Images Features and Texture Features: A Feasible Study ; Zerong Tian, Chaoyue Chen, Yang Zhang, Yimeng Fan, Ridong Feng and Jianguo Xu ; Contrast Media & Molecular Imaging ; Volume 2020, Article ID 4837156 (doi)
- LIFEx-Texture: Noninvasive prediction of lymph node status for patients with early-stage cervical cancer based on radiomics features from ultrasound images. Eur Radiol (2020). Jin, X., Ai, Y., Zhang, J. et al. (doi)
- LIFEx-Texture: Prognostic value of anthropometric measures extracted from whole-body CT using deep learning in patients with non-small-cell lung cancer. Blanc-Durand, P., Campedel, L., Mule, S. et al. Eur Radiol (2020). (doi)
- LIFEx-Texture: Radiogenomics predicts the expression of microRNA-1246 in the serum of esophageal cancer patients ; Hoshino, I., Yokota, H., Ishige, F. et al. Sci Rep 10, 2532 (2020) (nature)
- LIFEx-Texture: Correction for Magnetic Field Inhomogeneities and Normalization of Voxel Values Are Needed to Better Reveal the Potential of MR Radiomic Features in Lung Cancer. Lacroix Maxime, Frouin Frederique, Dirand Anne-Sophie, Nioche Christophe, Orlhac Fanny, Bernaudin Jean-François, Brillet Pierre-Yves, Buvat Irène ; Front. Oncol. 10:43. doi:10.3389/fonc.2020.00043 (frontiers)
- LIFEx-Texture: Hypovascular pancreas head adenocarcinoma: CT texture analysis for assessment of resection margin status and high-risk features ; Kulkarni, A., Carrion-Martinez, I., Jiang, N.N. et al. Eur Radiol (2020) (doi)
- LIFEx-Texture: Can radiomics improve the prediction of metastatic relapse of myxoid/round cell liposarcomas? Amandine Crombé, François Le Loarer, Maxime Sitbon, Antoine Italiano, Eberhard Stoeckle, Xavier Buy, Michèle Kind ; January 2020 ; European Radiology (springer)
- LIFEx-Texture: Development and validation of a nomogram based on CT images and 3D texture analysis for preoperative prediction of the malignant potential in gastrointestinal stromal tumors. Ren, C., Wang, S. & Zhang, S ; Cancer Imaging 20, 5 (2020) doi:10.1186/s40644-019-0284-7 (cancerimagingjournal)
- LIFEx-Texture: Projection-space implementation of deep learning-guided low-dose brain PET imaging improves performance over implementation in image-space ; Amirhossein Sanaat, Hossein Arabi, Ismini Mainta, Valentina Garibotto and Habib Zaidi ; Journal of Nuclear Medicine, published on January 10, 2020 (jnm)
- LIFEx-Texture: Predictive Role of Temporal Changes in Intratumoral Metabolic Heterogeneity During Palliative Chemotherapy in Patients with Advanced Pancreatic Cancer: A Prospective Cohort Study. Yoo SH1, Kang SY2, Cheon GJ2, Oh DY3,4, Bang YJ1,4. J Nucl Med. 2020 Jan;61(1):33-39. (pubmed)
- LIFEx-Texture: Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach ; Zhang Yang, Chen Chaoyue, Cheng Yangfan, Teng Yuen, Guo Wen, Xu Hui, Ou Xuejin, Wang Jian, Li Hui, Ma Xuelei, Xu Jianguo ; Frontiers in Oncology ; 2019, vol9 p1371 (frontiers)
- LIFEx-MTV: F-FDG PET Dissemination Features in Diffuse Large B-Cell Lymphoma Are Predictive of Outcome ; Anne-Ségolène Cottereau, Christophe Nioche, Anne-Sophie Dirand, Jérome Clerc, Franck Morschhauser, Olivier Casasnovas, Michel Meignan and Irène Buvat ; J Nucl Med January 1, 2020 vol. 61 no. 1 40-45 (jnm)