
Scripts

Local Image Features Extraction
— LIFEx —

C. Nioche, F. Orlhac, I. Buvat

LIFEx version 7.6.0,
Last update of document: 2024/03/08

What is a script? page 7Part I

Introduction 9
Rationale and what is a script?

General information

Script execution sequence

How to run a script file

Multi-scripts execution

General concepts page 13Part II

How to create? 15
Write a script

Script for getting started

More complex script

Main remarks

Perform operations

Perform common setting

Common
properties 19

common US Properties

Series
operations 21

Syntax examples

Available Series common operations

Available Series operations

ROI
operations 25

Syntax examples

Available ROI operations [threshold menu]

Available ROI operations [file/edit menu]

Available ROI operations [edit/reformat menu]Protocol
operations 27

Protocol TEXTURE operations

MTV Protocol operations

List of Figures

5

Part I

What is a script?

Chapter 1

Introduction

1.1 Rationale and what is a script?

Scripting is the process of writing scripts that automate certain tasks within LIFEx
application. Scripting is often used in this application to automate repetitive tasks, per-
form complex calculations, or customize the user experience.

In other words, a script file makes it possible to run all operations and calculations
without any user interaction. You can prepare it in advance. You can have as many
script files as you want, with names that you choose and you can save them and modify
them. They are simple text files.

The scripting procedure for LIFEx application typically involves the following steps:

• Writing the script: you can start writing the script itself. This involves using the
syntax and commands of the scripting language to create a set of instructions that
the application can execute.

9

1.2 General information

Introduction
• Debugging and testing the script: After writing the script, you will need to test it

to make sure it works as intended. This involves running the script and checking
its output, and debugging any errors or issues that may arise.

• Integrating/Executing the script with the application: Once the script is working
correctly, you will need to execute it with the application. This involves specifying
when and how the script should be executed within the application.

• Maintaining the script: Finally, you will need to maintain the script over time to
ensure that it continues to work correctly as the application evolves and changes.
This may involve updating the script to work with new versions of the application,
fixing any bugs that arise, or adding new functionalities as needed.

1.2 General information about writing a script text file

Introduction: A script file for LIFEx is a text file containing a sequence of properties.
Each property is written on a line.

Properties: Properties are configuration values managed as key=value pairs. In each
pair, the key and value are both String values. The key identifies and is used to retrieve,
the value, much as a variable name is used to retrieve the variable’s value.

Property example: For example, an application capable of saving file might use a
property named ”LIFEx.Output.Directory” to keep track of the directory used for the
saving the file.

LIFEx.Output.Directory = /home/user/newDirectory

• key property is ”LIFEx.Output.Directory” Upper and lower case are not impor-
tant in the key. This key can also be written : ”LIFEx.output.directory”

• value property is ”/home/user/newDirectory”

Construction guidelines of property:

• warning: a key is unique and cannot be repeated. Only one key per line.

• spaces before the key do not count.

• the order of the lines does not matter, however for human reading it is better to
categorize the actions.

• file paths must always be written with a file separator "/" even under Windows.

• lines beginning with "#" are comments and are not interpreted by the application.

10

Introduction

1.3 Script execution sequence

1.3 Script execution sequence

Here is the (mandatory) tasks order of execution in a script. Each script file will be read
in full and executed as follows:

1. Series loading [mandatory]

2. — Series operations [optional]

3. — Series saving [optional]

4. — ROI loading [optional]

5. —— ROI operations [mandatory if "loaded ROI", otherwise optional]

6. —— ROI saving [mandatory if "loaded ROI", otherwise optional]

7. — protocol operations [optional]

8. — ROI close [optional and automatic]

9. Series close [automatic]

1.4 How to run a script file

• Drag the script file in the panel used to load patient images.

1.5 Can I run several script files at the same time?

You can indeed run several script files one after another automatically. To do so,
please select all script files and drag them in the panel used to put the patient image
files. The script files will be executed one after another.

11

Part II

General concepts

Chapter 1

How to create a script?

1.1 Write a script

It is possible to chain the reading of the images and their respective ROI in order to
obtain a file including all results (.csv).

1.2 Script for getting started

This section shows an script example. This script loads 2 series named PT0 and PT1,
and then 2 ROI associated with PT0 (in Patient 0) and 2 ROI associated with PT1 (in
Patient 1).

You can copy/paste this script into a text file named script.txt (for example). Don’t
forget to change some information: ex. directory/subDirectory

15

1.3 More complex script

How to create?

#__
#
Common
#__
result directory -> mandatory
LIFEx.Output.Directory={directory/subDirectory}

#__
#
Patient 0 / Series 0 / ROI 0 / ROI 1
#__
loading series -> mandatory
LIFEx.Patient0.Series0={directory/subDirectory}/PT0
LIFEx.Patient0.Roi0={directory/subDirectory}/RoiVolume/S0R0.uint16.nii.gz
LIFEx.Patient0.Roi1={directory/subDirectory}/RoiVolume/S0R1.uint16.nii.gz

#__
#
Patient 1 / Series 0 / ROI 0 / ROI1
#__
loading series -> mandatory
LIFEx.Patient1.Series0={directory/subDirectory}/PT1
LIFEx.Patient1.Roi0={directory/subDirectory}/RoiVolume/S1R0.uint16.nii.gz
LIFEx.Patient1.Roi1={directory/subDirectory}/RoiVolume/S1R1.uint16.nii.gz

1.3 more complex script: save anonymous DICOM Se-
ries from DICOM Series

See below for a complete script example of save anonymous DICOM Series from DI-
COM Series:

#__
#
Patient 0 / Series 0
#__
loading series -> mandatory
LIFEx.Patient0.Series0={directory/subDirectory}/PT0
LIFEx.Patient0.Series0.Operation0=Save anonymous series dcm

#__
#
Patient 1 / Series 0
#__
loading series -> mandatory
LIFEx.Patient1.Series0={directory/subDirectory}/PT1
LIFEx.Patient1.Series0.Operation0=Save anonymous series dcm

16

How to create?

1.4 Main remarks

1.4 Main remarks relevant to the script writing

• What are the image formats that can be managed using LIFEx scripts?

– image files can be in NIfTI-1 format (.nii or .nii.gz). In this case, the complete
pathway to the patient image file should be given in the script;

– to load DICOM images, you must define the root directory of these images
(without the final filename). All files included in this directory will be loaded;

• What are the ROI formats that can be managed using LIFEx scripts?

– the NIfTI-1 and RTStruct are supported in LIFEx scripts. In both cases, the
file name should include the full path to the file. In the case of RTStuct, all
ROI are loaded without exception.

• Syntax of all pathways of files in LIFEx scripts:

– the syntax of pathway must neither contain accents and nor space.

– the syntax of pathway must not necessarily conform to your system rules:

* Windows: Unit:/Directory/File.extension
or Unit:/Your Directory/ for series of DICOM images
example C:/Home/Users1/File1

* Linux: /Your Directory/Your File.extension

* MacOs: /Your Directory/Your File.extension

1.5 Perform operations

Some intermediate operations are possible on the ROI. They will be performed after
reading the Series and ROI but before extracting the features and recording the results:

Main syntax of one operation: The syntax property for one operation is:
{key}.Operation0=nameOp0,arg1,arg2,...,argn

with "nameOp0" is the title of the button of the ROI action to be performed, arg1 the
first argument, arg2 the second argument, ...

Main syntax of many operations to the same Series or ROI: The syntax property for
many operation is:
{key}.Operation0=nameOp0,arg1,arg2,...,argn|nameOp1,arg1,arg2,...,argn

with "nameOp0" is the first operation, "nameOp1" is the second operation.

On this line the order (from left to right) of the operations is respected during execu-
tion.

Order operations between lines: If you have more than one operation to perform you
can describe the actions with an order given by the key_operationN:
{key}.Operation0=...
{key}.Operation1=...
{key}.Operation2=...

17

1.6 Perform common setting

How to create?

1.6 Perform common setting
LIFEx.Password: allows you to unlock a private function. Passwords are often used in our team to
prepare new features that are not yet released. This allows the release of the application with hidden
parts.
LIFEx.Password=****

LIFEx.GuiUpdate: showing (true) or not showing (false) of graphical user interface (is java head-
less) (LIFEx>=7.4.1) [true (default) || false]
This key allows to speed up the calculation of the scripts by not displaying the graphical user interface
during the execution of the texture calculations (convenient for servers).
LIFEx.GuiUpdate=false||true

LIFEx.SeriesRoiGuiUpdate: showing (true) or not showing (false) of series/ROI images in graph-
ical user interface (LIFEx>=7.5.6) [true (default) || false]
This key allows to speed up the calculation of the scripts by not displaying the different ROI and corre-
sponding planar slices during the execution of the texture calculations.
LIFEx.SeriesRoiGuiUpdate=false||true

LIFEx.MessagesGuiUpdate: showing (true) or not showing (false) of messages in graphical user
interface (LIFEx>=7.5.6) [true (default) || false]
This key allows to speed up the calculation of the scripts by not displaying the messages during the
execution of the texture calculations.
LIFEx.MessagesGuiUpdate=false||true

18

Chapter 2

Common properties

2.1 common US Properties
add US Properties:

When reading US dicom, it is possible to read only the average signal by deactivating red/green/blue
channel reading. These 3 channels are activated by default.

Add these lines to disable the 3 channels:
LIFEx.PropertiesSeriesUS.haveRedChannel=false
LIFEx.PropertiesSeriesUS.haveGreenChannel=false
LIFEx.PropertiesSeriesUS.haveBlueChannel=false

19

Chapter 3

Series operations

3.1 Syntax examples
• Saving series with anonymous DICOM field:

LIFEx.Patient0.Series0.Operation0=Save anonymous dcm

• Change unit of series in SUVbw:
LIFEx.Patient0.Series0.Operation0=SUVbw

• 2x2x2 Resampling series then saving result series in nifti format:
LIFEx.Patient0.Series0.Operation0=ResampleRescaling,2,2,2|save nii uint16

• Change output directory of series saving:
LIFEx.Output.Directory={directory/subDirectory/}

3.2 Available Series common operations
• Change common output directory of all Series saving:

LIFEx.Output.Directory={directory/subDirectory/}

• set the operation list on all series loaded:
LIFEx.Operation0=list of operations to be performed on all series

21

3.3 Available Series operations

Series opera-
tions

• have an open result directory at the end (false is the default value or if the line does not exist):
LIFEx.Output.Directory.OpenAtTheEnd=true

3.3 Available Series operations
• Save anonymous series in DICOM format (only if loaded series is in DICOM format too):

LIFEx.Patient0.Series0.Operation0=Save anonymous dcm

• Save series in DICOM format (only if loaded series is in DICOM format too):
LIFEx.Patient0.Series0.Operation0=Save dcm

• Save series in nrrd format:
LIFEx.Patient0.Series0.Operation0=Save nrrd

• Save series in nifti format (float 32 bits):
LIFEx.Patient0.Series0.Operation0=Save nii float32

• Save series in nifti format (uint 16 bits):
LIFEx.Patient0.Series0.Operation0=Save nii uint16

• Save series in ECAT format: (.v):
LIFEx.Patient0.Series0.Operation0=Save ecat

• Save MIP 3D Plans: Coronal, Sagittal, Axial in nifti format (float32):
LIFEx.Patient0.Series0.Operation0=Save MIP 3D Plans

• Save mp4: in video format (mp4):
LIFEx.Patient0.Series0.Operation0=Save mp4

• Change output directory of Series saving:
LIFEx.Patient0.Series0.Operation0.Output.Directory={directory/subDirectory/}

• Unit of Y axis of series, choose between: kBq/mL || SUVbw || SUVlbm || SUVibw || SUVbsa ||
Cpx/vx || Gy/vx || %/vx || .# class || .# k Pa || HU || T || mL/100g || mL/100g/min || sec || RC (.###)
|| min-1 || Proba || # || #.# || #.## || #.### || #.####
LIFEx.Patient0.Series0.Operation0=SUVbw

• Crop3D series. Coordinates are expressed in voxels (on referenced series). You can obtain
these two crop coordinates in the interface via the Series/Crop menu and the following fields:
"start corner" and "end corner".
LIFEx.Patient0.Series0.Operation0=Crop3D,coorX1,coorY1,coorZ1,coorX2,coorY2,coorZ2

• Crop2D series. Coordinates are expressed in voxels (on referenced series). You can obtain
these two crop coordinates in the interface via the Series/Crop menu and the following fields:
"start corner" and "end corner".
LIFEx.Patient0.Series0.Operation0=Crop2D,coorX1,coorY1,coorX2,coorY2

• Apply a spatial resample rescaling "ResampleRescaling":
LIFEx.Patient0.Series0.Operation0=ResampleRescaling,SigmaX,SigmaY,SigmaZ
Example with Sigma (x=3 mm, y=3mm, z=3mm):
LIFEx.Patient0.Series0.Operation0=ResampleRescaling,3.0,3.0,3.0
- float value Sigma is the FWHM/2 of kernels size in millimeter.

• Apply a spatial "LaplacienOfGaussian" filter:
LIFEx.Patient0.Series0.Operation0=LaplacienOfGaussianFilter,SigmaX,SigmaY,SigmaZ,
CalculationDimension,WholeBody,PaddingMethod
Example with Sigma (x=2 mm, y=2mm, z=2mm), 3d calculation dimension, wholebody enable
and reflect padding method:
LIFEx.Patient0.Series0.Operation0=LaplacienOfGaussianFilter,2,2,2,3d,true,reflect
- float value Sigma is the FWHM/2 of kernels size in millimeter.
- 3d calculation dimension is between [2d, 3d]
- wholebody is always true in script
- padding method is between [reflect, periodic, edge, zero]

22

Series opera-
tions

3.3 Available Series operations

• Apply a spatial "Gaussian" filter:
LIFEx.Patient0.Series0.Operation0=GaussianFilter,SigmaX,SigmaY,SigmaZ,
CalculationDimension,WholeBody,PaddingMethod
Example with Sigma (x=2 mm, y=2mm, z=2mm), 3d calculation dimension, wholebody enable
and reflect padding method:
LIFEx.Patient0.Series0.Operation0=GaussianFilter,2,2,2,3d,true,reflect
- float value Sigma is the FWHM/2 of kernels size in millimeter.
- 3d calculation dimension is between [2d, 3d]
- wholebody is always true in script
- padding method is between [reflect, periodic, edge, zero]

• Apply a spatial "Mean" filter:
LIFEx.Patient0.Series0.Operation0=MeanFilter,kernelDiameterSizeVx,
CalculationDimension,WholeBody,PaddingMethod
Example with sigma (x=2 mm, y=2mm, z=2mm), 3d calculation dimension, wholebody enable
and reflect padding method:
LIFEx.Patient0.Series0.Operation0=MeanFilter,3,3d,true,reflect
- float value sigma is the FWHM/2 of kernels size in millimeter.
- integer value diameter kernel size between [3, 5, 7, 9, 11, 13, 15]
- 3d calculation dimension is between [2d, 3d]
- wholebody is always true in script
- padding method is between [reflect, periodic, edge, zero]

• Apply a spatial "Wavelets" filter:
LIFEx.Patient0.Series0.Operation0=WaveletsFilter,TransformAlongZAxis,TransformAlongYXAxis,
FamilyName,Order,Level,PaddingMethod
Example with TransformAlongZAxis enable, TransformAlongYXAxis enable, coiflet familyName,
1 order and 1 level
LIFEx.Patient0.Series0.Operation0=WaveletsFilter,true,true,coiflets,1,1,reflect
- transformAlongZAxis is between [true, false]
- transformAlongYXAxis is always true
- familyName is between [coiflets, biorthogonal, daubechies, haar, reverse biorthogonal,
symlets]
- daubechies order is between [1, ..., 38]
- symlets order is between [2, ..., 20]
- coiflets order is between [1, ..., 17]
- reverse/biorthogonal order is between [11, 13, 15, 22, 24, 26, 28, 31, 33, 35, 37, 39, 44, 55,
68]
- haar order is equal [1]
- Level is equal [1]
- padding method is between [reflect, periodic, edge, zero]

• Apply a spatial "Laws" filter:
LIFEx.Patient0.Series0.Operation0=LawsFilter,KernelSize,WholeBody,PaddindMethod
Example with (l3, l3, l3 Kernel size, WholeBody enable, and reflect Paddind method
LIFEx.Patient0.Series0.Operation0=LawsFilter,l3,l3,l3,true,reflect
- kernel size is between [l3, l5, e3, e5, s3, s5, w5, r5]

with l3: level (1, 2, 1)
with l5: level (1, 4, 6, 4, 1)
with e3: edge (-1, 0, 1)
with e5: edge (-1, -2, 0 , 2, 1)
with s3: spot (-1, 2, -1)
with s5: spot (-1, 0, 2, 0, -1)
with w5: wave (-1, 2, 0, -2, 1)
with r5: ripple (1, -4, 6, -4, 1)

- wholebody is always true in script

23

3.3 Available Series operations

Series opera-
tions

- padding method is between [reflect, periodic, edge, zero]

24

Chapter 4

ROI operations

4.1 Syntax examples
• Below is an example of an "Absolute threshold" (n) with MinThreshold=2.5 and MaxThresh-

old=50:
LIFEx.Patient0.Roi0.Operation0=n,2.5,50

• Below is an other example of a "Absolute threshold" (n) with MinThreshold=2.5 and MaxThresh-
old=50 followed by the saving of result ROI in nifti (.nii) format:
LIFEx.Patient0.Roi0.Operation0=n,2.5,50|Save nii

4.2 Available ROI operations [threshold menu]
• Absolute threshold:

LIFEx.Patient0.Roi0.Operation0=n,ValueOfMinThreshold,ValueOfMaxThreshold

• Percent threshold:
LIFEx.Patient0.Roi0.Operation0=n%,ValueOfPercentThreshold

25

4.3 Available ROI operations [file/edit menu]

ROI operations

• 40 Percent threshold:
LIFEx.Patient0.Roi0.Operation0=40%

• 70 Percent threshold:
LIFEx.Patient0.Roi0.Operation0=70%

• Peak:
LIFEx.Patient0.Roi0.Operation0=Peak

• Nestle threshold:
LIFEx.Patient0.Roi0.Operation0=Nestle,ValueOfThreshold

• PERCIST threshold (need to have previously loaded a ROI named Liver):
LIFEx.Patient0.Roi0.Operation0=PERCIST

4.3 Available ROI operations [file/edit menu]
• Selected all ROI

LIFEx.Patient0.Roi0.Operation0=SelectedAllRoi

• Save ROI in nifti (.nii) format file:
LIFEx.Patient0.Roi0.Operation0=Save nii

• Save ROI in DICOM (.dcm) format file:
LIFEx.Patient0.Roi0.Operation0=Save dcm

• Save ROI in comma separator value (.csv) format file:
LIFEx.Patient0.Roi0.Operation0=Save csv

• Save ROI in turkupetcentre (.dft) format file:
LIFEx.Patient0.Roi0.Operation0=Save dft

• Not yet implemented (request of Recovery Coefficient not available in script):
LIFEx.Patient0.Roi0.Operation0=Save dftrc

• Save ROI in Pmod (.nrdd) format file:
LIFEx.Patient0.Roi0.Operation0=Save nrrd

• Change output directory of ROI saving:
LIFEx.Patient0.Roi0.Operation0.Output.Directory={directory/subDirectory/}

• Change common output directory of all ROI saving:
LIFEx.Output.Directory={directory/subDirectory/}

4.4 Available ROI operations [edit/reformat menu]
• Ring ROI: with n millimeter length kernel (n/2 of lateral thickness)

LIFEx.Patient0.Roi0.Operation0=Ring,n
Example with 10 millimeters (= 5 millimeters of lateral thickness): LIFEx.Patient0.Roi0.Operation0=Ring,10

26

Chapter 5

Protocol operations

5.1 Protocol TEXTURE operations

5.1.1 Rationale
When you have a large number of ROI and/or a large number of patients for which you want to calcu-

late usual indices (SUV, Volume, ...) and/or histogram-based or textural features, it can be convenient
to run a script that will do all the calculations for you without any user interaction. ROI have to be
prepared beforehand. You can then run the script many times if you want to perform the calculations
using different sets of parameters.

For instance: You have 10 ROI per patient and a set of 100 patients to be processed. You are
interested in studying the impact of the nbGreyLevels parameter on the 10*100 ROI, by setting this
parameter to 64, 128 and 256. You can create three script files that will all be identical except for the line
that sets the nbGreyLevels parameter. Running the script will calculate all indices for you automatically
and store them in csv files. You will be able to run all three scripts using a single command line, see
the "Can I run several script files at once?" p.11.

Another example: You have 10 ROI per patient and a set of 100 patients to be processed. You are
interested in studying the impact of the ResampleRescaling parameter on the 10*100 ROI, by setting
this parameter to 2x2x2 mm and to 4x4x4 mm. You can write and run a first script by setting the

27

5.1 Protocol TEXTURE operations

Protocol opera-
tions

ResampleRescaling parameter to 2x2x2 mm. Then duplicate the script and change 2x2x2 mm by
4x4x4 mm to produce a second script to be run. Running the two scripts will calculate all indices for
you automatically and store them in csv files. Setting the spatial resampling parameter to 2x2x2 mm in
the script file can be done as in series operations chapter.

Using scripts may produce numerous ROIs. To check that the resulting ROI are compatible with
texture index calculation and before running such calculations that can be time-consuming, you can
use the CheckTex button after the ROI creation and before proceeding with textural index calculation.
This will check whether the ROI includes a single cluster and contain a number of voxels greater than
that required for consistent textural feature calculation. If one of these two conditions is not met, a
warning message will be displayed.

All these lines contain the series paths, ROIs and parameters needed to redo the texture analy-
sis you’ve just designed in the user interface. You can then drag this file into the application’s se-
ries/images/scripts reading area to run the whole procedure. You can also use this file as a starting
point for modifying certain parameters in order to re-execute a new analysis under the same conditions.

5.1.2 Explanation of field contents
Check: if true, allows to define a fast calculation of the script with only a few pre-selected features
(voxelsCounting, min, mean, max). This key is used to produce a fast 1st pass on a patient cohort in
order to establish the min and max values of all ROIs of all patients. These values can be entered in
the same script for a 2nd pass (with texture calculation : Check=false).

KeepTheLargestCluster: allows you to define if you want to keep the largest of the clusters only
when an ROI is composed of several clusters. If the value of this key is true, then only the largest
cluster is kept (the others are deleted during the calculation). If this value is false, then the ROI remains
composed of several clusters if this is the case.

IsEnabledRoiUnion: is used to assemble all regions into a single (non connected) one before
calculating texture features.

BinSize and NbGreyLevels (how set the quantization): When you set the quantization of
grey-level discretization parameters, you can leave one of the two sets to 0. Its value will then be
automatically calculated based on the other parameter setting.

For instance:
if BinSize = 0 then BinSize = (boundMax − boundMin)/(nbGreyLevels − 1)
if nbGreyLevels = 0 then nbGreyLevels = ((boundMax − boundMin)/binSize) + 1
if BinSize = 0 and nbGreyLevels = 0 then nbGreyLevels = 64 by default
boundMin and bounsMax are the minimum and maximum values in the processed ROI.

Discretization has been set with:

discretizedValue = f loor((nbGreyLevels ∗ originalValue−boundMin
boundMax−boundMin) + 1)

Have the minimum and maximum bounds of a whole cohort of patients in a script
(without texture calculation)

It is easy to find the BoundMax of all the ROI of all your patients in order to put this bound in the final
script. This has to be done in 2 steps with exactly the same script (by changing one parameter). Here
is the process.

28

Protocol opera-
tions

5.1 Protocol TEXTURE operations

• step 1: change this value to "true" on the Check key. It allows calculating the min, max bounds
of all the ROI in a single pass of the script.

• step 2: run the script a first time to have only bound results; You then retrieve the max of the
max of all the ROIs and correct the value of the MaxBound key in the script file

• step 3: change to false value of Check key in the script file

• step 4: run the script a second time to have all feature results

5.1.3 Automatic texture script creation
LIFEx (version>=7.6.0) may automatically create a simple texture script for you. To do so, follow the

standard texture protocol in the interface. However, instead of executing the texture calculations by
pressing the run button, you can generate the corresponding script by pressing the script button (to the
left of the run button).

A text file will open with the contents of the script written for you, taking into account the interface’s
texture parameters. This script also includes the loading of previously opened Series and ROI.

Simply drag this script file into a new LIFEx session in the image loading section to launch your
texture analysis automatically.

5.1.4 Operations
• running texture protocol (global ROI) with Absolute discretization:

template: LIFEx.Patient0.Operation0=Texture,
KeepTheLargestCluster,Check,isEnabledRoiUnion
DistanceWithNeighbours,DimensionProcessing,
Absolute,BinSize,NbGreyLevels, MinBound,MaxBound

example: LIFEx.Patient0.Operation0=Texture,true,false,false,1,3D,Absolute,0,64,0,20
Texture with KeepTheLargestCluster=true
and with check=false
and with isEnabledRoiUnion=false
and with DistanceWithNeighbours=1 and with DimensionProcessing=3D
and with Absolute discretization
and with BinSize=0
and with NbGreyLevels=64
and with MinBound=0
and with MaxBound=20

• running texture protocol (global ROI) with RelativeMeanSd discretization:

template: LIFEx.Patient0.Operation0=Texture,
KeepTheLargestCluster,Check,isEnabledRoiUnion
DistanceWithNeighbours,DimensionProcessing,
RelativeMeanSd,BinSize,NbGreyLevels, MinBound,MaxBound

example: LIFEx.Patient0.Operation0=Texture,true,false,false,1,3D,RelativeMeanSd,0,64
Texture with KeepTheLargestCluster=true, check=fasle, isEnabledRoiUnion=false
and with DistanceWithNeighbours=1
and with DimensionProcessing=3D
and with RelativeMeanSd discretization

29

5.2 MTV Protocol operations

Protocol opera-
tions

and with BinSize=0
and with NbGreyLevels=64

• running texture protocol (global ROI) with RelativeMinMax discretization:

template: LIFEx.Patient0.Operation0=Texture,
KeepTheLargestCluster,Check,isEnabledRoiUnion
DistanceWithNeighbours,DimensionProcessing,
RelativeMinMax,BinSize,NbGreyLevels, MinBound,MaxBound

example: LIFEx.Patient0.Operation0=Texture,true,false,false,1,3D,RelativeMinMax,0,64
Texture with KeepTheLargestCluster=true, check=fasle, isEnabledRoiUnion=false
and with DistanceWithNeighbours=1
and with DimensionProcessing=3D
and with RelativeMinMax discretization
and with BinSize=0
and with NbGreyLevels=64

• running texture protocol (local Map = Voxel-wise feature extraction) with Absolute discretization
(mandatory):

template: LIFEx.Patient0.Operation0=TextureMap,KernelProcessing,MapModel,BinSize,NbGreyLevels,
MinBound,MaxBound
with KernelProcessing between 3||5||7
with MapModel between WholeBody||VoxelsOfRoi||BoundingBoxOfRoi
Don’t forget the ROI loading line if you’re using MapModel VoxelsOfRoi||BoundingBoxOfRoi

example: LIFEx.Patient0.Operation0=TextureMap,3,WholeBody,0,64,0,20
TextureMap with KernelProcessing=3
and with MapModel=WholeBody
and with BinSize=0
and with NbGreyLevels=64
and with MinBound=0
and with MaxBound=20

5.2 MTV Protocol operations

5.2.1 Introduction

The calculation of MTV values can be automated with scripts. It is possible to chain the reading of
the images and their respective ROI in order to obtain a file including all results (.csv).

5.2.2 Operations

• running MTV protocol: template: LIFEx.Patient0.Series0.Operation0=Mtv,KeepTheLargestCluster
example: LIFEx.Patient0.Series0.Operation0=Mtv,false

30

Protocol opera-
tions

5.2 MTV Protocol operations

• KeepTheLargestCluster on MTV: allows you to define if you want to keep the largest of the
clusters only when an ROI is composed of several clusters.
If the value of this key is true, then only the largest cluster is kept (the others are deleted during
the calculation).
If this value is false, then the ROI remains composed of several clusters if this is the case.
-> In the MTV protocol, we strongly recommend leaving this parameter at false, otherwise all
clusters will not be taken into account when calculating the MTV (this depends mainly on the
goal set).

5.2.3 Script example
This section shows a script example of MTV protocol.

You can copy/paste this script into a text file named script.txt (for example). Don’t forget to change
some information: ex. directory/subDirectory

31

5.2 MTV Protocol operations

Protocol opera-
tions

result file -> mandatory
LIFEx.Output.Directory={directory/subDirectory}

##
Patient0 / Series / ROI
##
loading series -> mandatory

LIFEx.Patient0.Series0={directory/subDirectory}/PT0
LIFEx.Patient0.Series0.Operation0=Mtv,false

loading ROI -> mandatory
LIFEx.Patient0.Roi0={directory/subDirectory}/RoiVolume/R1.uint16.nii.gz
LIFEx.Patient0.Roi1={directory/subDirectory}/RoiVolume/R2.uint16.nii.gz

##
Patient 1 / Series
##
loading series -> mandatory

LIFEx.Patient1.Series0={directory/subDirectory}/PT1
LIFEx.Patient1.Series0.Operation0=Mtv,false

loading ROI -> mandatory
LIFEx.Patient1.Roi0={directory/subDirectory}/RoiVolume/R1.uint16.nii.gz
LIFEx.Patient1.Roi1={directory/subDirectory}/RoiVolume/R2.uint16.nii.gz

5.2.4 Output files
The root value of the key ”LIFEx.Output.Directory” will be used for the construction of 2 files (2

files MTV_ROI and 2 files MTV_SUMMARY) will be saved at the end of the script execution by the
application:

• MTV_ROI_results.csv: will contain all the features extracted from each ROI;

• MTV_ROI_legend.csv: will contain the legend of all features extracted from each ROI

• MTV_SUMMARY_results.csv: will contain aggregated features calculated from several ROIs.

• MTV_SUMMARY_legend.csv: will contain the legend of aggregated features calculated from
several ROIs.

32

	I What is a script?
	 Introduction
	Rationale and what is a script?
	General information
	Script execution sequence
	How to run a script file
	Multi-scripts execution

	II General concepts
	 How to create?
	Write a script
	Script for getting started
	More complex script
	Main remarks
	Perform operations
	Perform common setting

	 Common properties
	common US Properties

	 Series operations
	Syntax examples
	Available Series common operations
	Available Series operations

	 ROI operations
	Syntax examples
	Available ROI operations [threshold menu]
	Available ROI operations [file/edit menu]
	Available ROI operations [edit/reformat menu]

	 Protocol operations
	Protocol TEXTURE operations
	Rationale
	Explanation of field contents
	Automatic texture script creation
	Operations

	MTV Protocol operations
	Introduction
	Operations
	Script example
	Output files

